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Abstract
Transactional Memory (TM) promises both to provide a scalable
mechanism for synchronization in concurrent programs, and to of-
fer ease-of-use benefits to programmers. To date, TM’s biggest suc-
cesses have been as a mechanism for achieving Transactional Lock
Elision (TLE). In TLE, critical sections are attempted as transac-
tions, with a fall-back to the original lock if conflicts manifest. Thus
TLE expects to improve scalability, but not ease of programming.
Still, until TLE can deliver performance improvements, transac-
tional styles of programming are unlikely to gain popularity.

In this paper, we describe our experiences employing TLE in
two real-world programs: the PBZip2 file compression tool, and
the x265 video encoder/decoder. We discuss the obstacles we en-
countered, propose solutions to those obstacles, and introduce open
challenges. In experiments using the GCC compiler’s hardware and
software support for TM, we observe that both are able to outper-
form the original lock-based code, potentially heralding the readi-
ness of TM to be used more broadly in TLE, if not for truly trans-
actional styles of programming.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

Keywords Transactional Memory, Lock Elision, Synchroniza-
tion, Privatization, Semantics, Two-Phase Locking

1. Introduction
There are two equally appealing programming models for Trans-
actional Memory (TM) [9]. In the first, programmers endeavor to
create new concurrent programs, or new concurrent modules within
existing programs, and expect to use transactions as the primary
mechanism for concurrency control. In this “transactions first” ap-
proach, every feature of the TM implementation, to include any
support for self-abort [8, 17], deferred actions [25], or nuanced con-
tention management [20], is an input to the programmer’s design
process. It is taken for granted that the program’s use of TM will re-
sult in good scalability. In the second model, a programmer takes as
input a lock-based program with less-than-desirable performance,
and replaces locks with TM, hoping that in so doing, unnecessary
serialization can be avoided. The programmer in this case thinks of
TM as a mechanism for achieving lock elision, and is encouraged
to ignore advanced features of the TM implementation.

The current draft of the C++ TM Technical Specification
(TMTS) [11] exposes two constructs for lexically-scoped trans-
actions, which correspond to these two uses: atomic blocks and
synchronized blocks.1 The TMTS allows both types of blocks
to execute simultaneously, and specifies that either hardware or a
software runtime will track conflicts among both types of transac-

1 In prior versions of the technical specification, these were referred to as
“atomic” and “relaxed” transactions, respectively.

tions to ensure that any transactional execution has an equivalent
serializable, sequential history.

Despite five years of support for TM in the GCC compiler
and mainstream CPUs, and two years of experience with the C++
TMTS, TM adoption remains limited. This is particularly concern-
ing given the availability of synchronized blocks: if individ-
ual locks can be elided, one at a time, without requiring a whole-
program rewrite, then certainly programmers should be able to find
opportunities to employ TM and improve scalability. While the use
of synchronized and atomic blocks seems to be decoupled,
there is a natural dependency that programmers may perceive: if
lock elision is not profitable, then full-blown transactional pro-
gramming is unlikely to result in programs that scale better than
they would with locks. In effect, any future adoption of TM de-
pends on success stories with transactional lock elision.

Part of the problem faced when demonstrating the effectiveness
of lock elision is the significance of the input program. The most
compelling examples of successful lock elision will improve the
performance of a program that is widely used. However, such pro-
grams are likely to be highly optimized, with carefully crafted lock
protocols that already avoid contention and ensure good scalability.
To elide locks in anything less significant is to create a false com-
parison, where the baseline is either unimportant or unoptimized.
To date, efforts to improve production-quality programs via TM
have had limited success [19], or have required low-level reasoning
about a specific hardware TM (HTM) implementation [12].

In this paper, we employ the C++ TMTS to transactionalize
two programs of significant size and realism: the PBZIP2 file com-
pression benchmark, and the x265 media encoder/decoder. Both
programs are large, robust, and mature. Both transactionalizations
adhere to the C++ TMTS, resulting in programs that can be con-
nected to any TM implementation. In both cases, we find that the
use of TM for lock elision improves performance, with HTM show-
ing gains of up to 9%. Along the way, we identify several gaps in
the quality of existing tools and libraries for transactional program-
ming, we observe obstacles unique to transactional lock elision,
and we propose solutions that affect HTM, software TM (STM), or
both.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the high-level behavior of the two applications
upon which this paper focuses. Section 3 discusses the quiescence
mechanism used to ensure lock-based semantics, and presents sit-
uations in which quiescence overheads are avoidable. Section 4
discusses problematic lock-based code in x265, which is not im-
mediately transactionalizable. Section 5 briefly discusses addi-
tional considerations these applications present, and describes our
workarounds. Section 6 presents performance results for the two
applications, and shows that with modest effort, HTM is able to
outperform the original lock-based code. Section 7 concludes.
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2. PBZip2 and x265
Our study focuses on the transactional elision of locks in two
programs, as described below.

PBZip2 PBZip2 is the parallel version of the bzip2 file compres-
sion algorithm. Whereas the original bzip2 algorithm takes as in-
put a complete file stream, and then compresses it, PBZip2 splits a
file into multiple streams, and compresses those streams in parallel.
The user is able to specify the size of each stream, to balance the
amount of work per thread with the number of threads. Internally,
the program generally follows a serial-parallel-serial pipeline pat-
tern. A producer thread creates stream descriptors, and passes them
to consumer threads. Consumer threads compress or decompress
streams, based on the descriptors they pull from the queue. Their
output is passed to the final stage, a serial write stage, which pro-
duces the output file by assembling its input in the correct order.

The implementation employs six locks and six condition vari-
ables. The critical sections are friendly to transactionalization, in
that they do not make system calls, and are small. In particular, the
compression and decompression operations are performed outside
of critical sections. The main source of contention is for the locks
protecting the inter-stage queues.

x265 x265 is a video encoder application capable of encoding
video streams or images into the HEVC/H265 compression for-
mat. The encoding algorithm divides each frame into sequences of
macro-blocks called “slices”, which are passed to decoder threads.
Each slice consists of a sequence of CTUs (Coding Tree Units),
which can be encoded by making reference to another unit in the
same frame (intra-picture prediction) or in another frame (inter-
picture prediction). The output frame is stored in a decoded frame
buffer to be used for the prediction of other frames.

x265 takes advantage of as much parallelism as possible to
improve performance. With frame-level parallelism, independent
frames can be encoded simultaneously. Each video frame is also di-
vided into slides that can be independently processed. In CTURow-
level parallelism, a wavefront parallelization algorithm processes
an individual frame. Within each CTU, CUs (Coding Units) dis-
tribute their analysis work to threads, which provide CU-level par-
allelism. At the lowest level, vector instructions can be enabled to
process adjacent pixels of a frame. To manage parallelism more
abstractly, x265 includes wrappers over traditional synchronization
objects. These include a thread pool and a condition variable wrap-
per, as well as a wrapper around mutex locks. A depiction of the
wavefront appears in Figure 1.

Figure 1: HEVC wavefront parallel processing [18].

There are three main lock objects in x265:
• Lookahead Lock: This lock prevents concurrent access to

shared input and output queues of frames; in essence, it me-
diates inter-frame parallelism.

• CTURows Lock: This lock is used by the wavefront processing
algorithm, to mediate communication from completed CTUs to
the CTUs that depend on it.

• EncoderRow Lock: This lock protects shared data when multi-
ple threads work on the same row within a slice of a frame.

There are additional locks, to include the “bonded task group”
lock, which governs the allocation of jobs to threads; a “parallel
motion estimation” lock, which protects searches for reference
frames during motion searches; and a “cost lock”, which protects
metadata and metrics maintained by the threads.

3. Quiescence and Lock Elision
The Java programming language places constraints on the behavior
of programs, even when those programs are not correctly synchro-
nized [15]. As a result, formalizations of transactional semantics for
Java that were expressed in terms of locks [16] relied on quiescence
to ensure ordering between transactions, even when those transac-
tions did not access any shared memory. Quiescence ensures that
whenever a thread commits a transaction, it waits until all concur-
rent threads commit or abort and clean up before the thread is per-
mitted to execute the code that follows the transaction. While some
STM algorithms have quiescence support built-in [2, 4, 14, 22],
the STM algorithm in GCC does not, and requires a committing
transaction to execute code similar in spirit to a userspace RCU
Epoch [3].

In contrast, the C++ language does not define the behavior of
racy programs, and the C++ TMTS does not define the semantics of
transactions in terms of locks. As a result, we can use the notion of
transactional sequential consistency [1] to describe a C++ memory
model that includes locks, atomic variables, and transactions.
The memory model requires a global total order on synchronization
operations, program order on synchronization operations within a
thread, and a global total order on all transactions. The model does
not handle explicit self-abort within transactions, which Shpeisman
et al. previously showed to be a source of significant additional
complexity [21].

From a practical perspective, the main role of quiescence is to
ensure that when a transaction transitions data from a shared state
to thread-private, or vice versa, concurrent transactions accessing
that data do not race with legal nontransactional accesses. In HTM,
such accesses are not possible; in STM, they can result due to
delayed undo or write-back operations. Since publication safety
(i.e., ensuring the absence of races when transitioning data to a state
in which it can be accessed by transactions) is assured by data and
control-flow dependencies in the source code, quiescence in C++
is only required for privatization safety (i.e., ensuring the absence
of races when transitioning data to a state in which it is no longer
accessed by transactions) among STM transactions.

When the C++ TMTS is used to achieve lock elision, two prob-
lems emerge. First, lock elision is achieved via a form of lock era-
sure: whereas the original program may contain many locks, which
protect disjoint regions of memory, all elided locks become trans-
actions over a single shared heap. As an example, if a program con-
tained a queue protected by lock L1, and a stack protected by lock
L2, the transactional version would contain one class of transac-
tions used to protect both the queue and the stack. As a global syn-
chronization operation, quiescence forces a transaction on the stack
to delay after it commits, waiting until any concurrent transaction
touching the queue or the stack has committed or aborted. Since
the locks are erased during TMTS-based transactional lock elision,
the granularity of quiescence becomes unnecessarily coarse.

The second problem is that quiescence has the potential to result
in transaction congestion. Consider two transactions, T1 and T2,
each of which takes U units of time to complete. Suppose that T1

begins at time 0, and T2 begins at time U/2. When T1 completes,
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Listing 1: Proxy privatization
// Vector update thread

1 atomic cancel
2 for k ∈

0 . . . size do
3 update(vec[k])

// Privatizer thread
1 atomic cancel
2 msg ← vec

3 vec← null

// Proxy thread

1 atomic cancel
2 if msg = null

then
3 retry

4 use(msg)

it must wait for T2 to commit or abort. This waiting does not
increase the likelihood of T2 aborting, because T1 has already
committed. However, if T1 and T2 execute in tight loops, then after
one iteration, the interval between when the next T1 and next T2

begin is likely to be less than U/2. Quiescence in T1 results in
future congestion.

While HTM does not incur quiescence overheads, STM must.
Furthermore, these overheads are growing increasingly expensive.
Prior to 2016, GCC’s STM implementation performed quiescence
after every writing transaction. This, however, does not support
proxy privatization (see, e.g., Listing 1). Since 2016, every trans-
action quiesces after committing. Clearly, this maximal use of qui-
escence prevents privatization-induced races.

3.1 Programatically Avoiding Quiescence
Alternatives to maximal quiescence draw from the observation that
privatizing in C++ always involves at least one transaction. Two
sufficient criteria arise: (a) require quiescence in the transaction that
transitions the data to a nontransactional state, or (b) require quies-
cence in the last transaction executed by a thread before it accesses
data nontransactionally. In practice, neither approach is straight-
forward: When transactions are nested, or have complex memory
access patterns, it is not feasible to expect programmers to know
which transactions privatize. Indeed, some transactions might only
privatize under certain circumstances (consider a consumer who
reads from a producer/consumer queue: if the queue is empty, there
is no data to privatize). Furthermore, proxy privatization (itself a
reasonable idiom, e.g., for a producer/consumer workload with per-
consumer queues) cannot support marking privatizing transactions
(criteria “a” above) without added overhead.2

In the proxy privatization case, a writer privatizes the data, and
then a transaction in another thread executes before the data is ac-
cessed nontransactionally. In the non-proxy privatization case, a
writer is the last transaction to modify the data before nontrans-
actional access. In both cases, it is easier to achieve the second suf-
ficient criteria: we could mark the last transaction before the private
access.

With complex control flows, nested transactions, and separate
compilation, we do not believe that programmers will be able to
correctly identify the minimal set of transactions that require qui-
escence. However, one simple heuristic can capture a fair portion
of the times when quiescence is not needed: if transactions T1 and
T2 are executed sequentially by the same thread, then T1 requires
quiescence only if the thread’s memory accesses between T1 and
T2 might include data that was accessible by transactions prior to
T1’s execution.

Prior work by Yoo et al. [24] suggests that in some work-
loads, quiescence can be disabled for all transactions. Yoo et al.
also showed that in such cases, disabling quiescence for those
workloads had a significant improvement on performance. Unfor-
tunately, such an approach is not compositional: any change to the
program requires whole-program analysis to determine if globally

2 The issue is that existing STM algorithms would require writing transac-
tions to quiesce before releasing ownership of locations.

Listing 2: Producer/consumer workload
// Producer thread

1 while true do
2 atomic cancel
3 if ¬c.full() then
4 c.insert(produce())

5 TM.NoQuiesce()

// Consumer thread
1 while true do
2 atomic cancel
3 if ¬c.empty() then
4 tmp← c.get()

5 else
6 tmp← nil
7 TM.NoQuiesce()

8 if tmp 6= nil then
9 use(tmp)

disabling quiescence remains correct. It also fails when few trans-
actions privatize.

We propose a new TM API function: TM.NoQuiesce. When
called within a transaction, this function indicates that the transac-
tion should not quiesce after it commits. The call has no meaning
for strongly isolated HTM implementations, or for STM implemen-
tations that do not require quiescence. The STM implementation is
also free to ignore the API call. Two examples are when the transac-
tion making the call is nested within another transaction, in which
case its programmer is unlikely to know the privatization behavior
of the parent transaction, and when the transaction frees memory
(certain TM-aware memory managers require quiescence before re-
turning memory to the operating system [10]). Furthermore, since
the call can be made conditionally, it avoids overhead in the above
case, where a consumer encounters an empty queue.

Listing 2 demonstrates the use of TM.NoQuiesce. The pro-
ducer need never quiesce, since it never privatizes data, and the
consumer need only quiesce if it succeeds in extracting an element
from the collection (c). This example offers additional benefits: for
single-producer, multi-consumer workloads, the producer is more
likely to be the bottleneck, and avoids quiescence. Furthermore,
when a consumer finds no work, it does not wait unnecessarily be-
fore looking again.

3.2 Pitfalls
TM.NoQuiesce has the potential to significantly increase scal-
ability: quiescence can entail cache misses linear in the number
of threads, to observe their current state and determine when they
are no longer at risk of racing with a subsequent nontransactional
access; and long-running transactions can lead to a quiescence op-
eration blocking unrelated threads’ committed transactions for the
duration of the long-running operation. However, when used incor-
rectly, TM.NoQuiesce transforms an otherwise correct program
into a racy program.

The problem is that Transactional Sequential Consistency de-
mands a global total order among transactions, and the transi-
tive closure of transaction order and program order must estab-
lish happens-before relations. Quiescence delays committing trans-
actions long enough to be certain of transitivity with program
order across threads. In contrast, TM.NoQuiesce asserts that
data and/or control-flow dependencies within a specific transac-
tion, or among specific dynamic instances of transactions within
the thread, are enough to provide happens-before. When the asser-
tion is faulty, the program becomes erroneous because there are
accesses to shared memory that may not be compatible with any
global total order on transactions. We expect these errors to be easy
to identify and fix using transactional race detectors. For example,
T-Rex [13] is able to identify all races that arise when a TM library
fails to provide privatization safety. Extending T-Rex to understand
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Listing 3: Example of non-serializable critical section in
x265.

// LOCK for output queue(i)
1 OutputQueue.lock()

2 element = newQueueNode()

3 OutputQueue.enqueue(element)

4 process(element)

5 OutputQueue.unlock()

// LOCK for output queue(ii)
6 OutputQueue.lock()

7 OutputQueue.dequeue()

8 OutputQueue.unlock()

// Process(element)
process(element)

9 m lock.lock()

10 m task = element.size()

11 m lock.unlock()

12 sub working()

13 Wait()

14 return

// Task for working threads
sub working()

. . .

15 m lock.lock()

16 m task −−
17 m lock.unlock()

. . .

implicitly privatization-safe STM with selective disabling of priva-
tization appears to be straightforward.

4. Two Phase Locking and x265
Part of the appeal of TM is that it ought to be easier than using
fine grained locks. By extension, it ought to be easy to employ
TM for lock elision: the programmer need only replace each lock-
based critical section with a transaction. Past work has revealed
this task to be laborious, but not thought-intensive. For example, in
transactional memcached [19], the effort was in identifying which
transactions caused unnecessary serialization, and then creating
transaction-safe variants of the standard library functions that were
responsible for the serialization.

In memcached, critical sections obeyed two-phase locking [6],
by ensuring that all lock acquires preceded all lock releases within
each critical section. The only complication was when a critical
section also read a C++ atomic variable. Our solution was to
model these as mini-transactions, and subsume them within the
transaction that replaced the critical section. In memcached, critical
section behavior did not depend on an atomic variable changing
between accesses, and hence this was safe.

The transactionalization of PBZip2 did not result in any new
lessons about how to transactionalize code: lock-based critical sec-
tions were replaced with transactions, and as appropriate, func-
tions were annotated to ensure transaction safety. Transactions did
not contain complex behavior or control flow. However, during the
transactionalization of x265, we found a situation in which the pat-
tern of lock acquisitions and releases was clearly not two-phase
locking, and hence the program could not be naively transactional-
ized: if the outer lock was replaced with a transaction, the program
would hang.

Fortunately, the violation of two-phase locking in x265 was fix-
able. The specific behavior was that a producer thread would ac-
quire a lock on its output queue, then produce elements, then place
the elements in the queue and unlock the queue (Listing 3). During
element production, several smaller critical sections ran, with inter-
thread communication between the critical sections. These critical
sections could not be subsumed by the transaction on the output
queue. Our solution was to embed a ready flag in each queue node,
rather than keep the queue locked for the duration of the program
(Listing 4). Across several workloads and thread counts, we con-
firmed that this modification did not affect performance. With the
change in place, each of the critical sections during element pro-
duction could be separately transactionalized.

Listing 4: A ready flag avoids lock nesting, facilitating
transactionalization.

// LOCK for output queue(i)
1 OutputQueue.lock()

2 element = newQueueNode()

3 OutputQueue.enqueue(element)

4 element.ready = false

5 OutputQueue.unlock()

6 process(element)

7 OutputQueue.lock()

8 element.ready = true

9 OutputQueue.unlock()

// LOCK for output queue(ii)
10 OutputQueue.lock()

if OutputQueue.peek().ready
11 element = OutputQueue.dequeue()

12 OutputQueue.unlock()

Our experience introduces two research questions, which we
leave as future work:
• Can it be proven that naive transactionalization is safe for criti-

cal sections that obey two-phase locking?
• Under what conditions will naive transactionalization of non-

two-phase locking code remain safe?

5. Additional Considerations
Library and compiler support for the TMTS remains inconsistent,
and we encountered three categories of code that caused transac-
tions to serialize unnecessarily or behave incorrectly. For complete-
ness, we discuss each problem and its resolution below.

Logging Overheads In TM versions of memcached and Atomic
Quake [26], critical sections occasionally perform logging opera-
tions, such as error messages and diagnostic writes to per-thread
logs. The program does not require any ordering among logging
operations: they are timestamped, the order can be determined post-
mortem, and the return values of any syscalls during logging are
ignored. Consequently, these operations can either be executed un-
safely (and possibly more than once) by STM, or deferred until
the end of the transaction. Since unsafe execution would still lead
HTM to serialize, we chose to defer the logging operations, using
the Mimir method [25].

Conditional Synchronization In order to support its soft real-
time guarantees, x265 uses timeouts whenever a thread waits on a
condition variable. To support this behavior, we first refactored the
relevant critical sections to be compatible with Wang’s transaction-
safe condition variable library [23]. However, the library did not
support timeouts. Our extension makes use of timed wait operations
in POSIX semaphores, and was verified to have no impact on the
behavior of the original lock-based program.

Vector Instructions Lastly, x265 can be configured to make use
of vector instructions (e.g., Intel SSE) during rendering. In all, there
are over 50 distinct SSE instruction types used by the program, all
of which cause STM implementations to serialize. By analyzing
each SSE call, we were able to determine that the compiler cor-
rectly instrumented SSE memory accesses, at which point the re-
maining SSE arithmetic operations did not require instrumentation.
Our solution was to use the (deprecated) transaction pure
annotation to prevent these operations from causing the compiler
to insert serializing instructions. However, this is not a satisfactory
long-term approach.
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6. Evaluation
In this section, we evaluate the use of TMTS-based transactional
lock elision in PBZip2 and x265. As much as possible, we pre-
served the original structure of the source code. The only excep-
tions are (1) our “ready” flag in x265, which allowed us to trans-
form the code to adhere to two-phase locking, (2) the addition
of TM.NoQuiesce calls, and (3) minor refactorings of trans-
actions that wait as part of condition synchronization. We use
Wang’s transaction-friendly condition variables [23], but these re-
quire waiting transactions to be enclosed in a loop, and rewritten
so that a waiting transaction always performs its wait as its last
instruction. Since the TMTS does not officially support these con-
dition variables, we also considered the use of this refactored code
without conditional waiting, in which case threads repeatedly poll
their wait condition within a small transaction.

All experiments were conducted on a 4-core/8-thread Intel Core
i7-4770 CPU running at 3.40 GHz. This CPU supports Intel’s TSX
extensions for HTM, includes 8 GB of RAM, and runs a Linux 4.3
kernel. We used the GCC 5.3.1 compiler, and only modified its TM
implementations enough to support transaction-friendly condition
variables (the default HTM implementation does not, due to a lack
of support for deferred actions). Results are the average of 5 trials.
The STM results use ml wt algorithm (a privatization-safe version
of TinySTM [7]. The HTM results fall back to a serial mode after
hardware transactions fail twice.

6.1 PBZip2
PBZip2 offers two independent operations, Compress and Decom-
press. We test both, using a 650MB test file. Within PBZip2, we are
able to dynamically control the number of worker threads, as well
as the size of the blocks that are processed in parallel; all other con-
figuration parameters are set to their defaults. In our experiments,
we vary the number of worker threads from 1 to 8, and consider
block sizes of 100K, 300K, and 900K (the range is 100K to 900K,
with 900K being the default). Apart from the worker threads, there
is a main thread, which runs the benchmark harness but does not
participate in the work.

We compare five algorithms. The baseline is the original code,
which uses pthread mutex locks. We then consider three STM
algorithms: STM + Spin uses the ml wt algorithm, and uses spin
waiting when the baseline would wait on a condition variable. STM
+ CondVar uses transaction-friendly conditional variables. STM +
CondVar + NoQuiesce adds dynamic disabling of quiescence for
selected transactions. Lastly, the HTM + CondVar executes the
transaction using GCC’s HTM support.

The main use of critical section in PBZip2 is to protect queue
metadata. Therefore, the average size of critical sections is small.
Each thread can access the metadata after it finishes compress-
ing/decompressing its block. Conflicts among critical sections are
rare: for a 650MB test file, we observe between 950 and 1100 trans-
actions, of which 0.1% abort at least once in STM. In the HTM ex-
periments, 13% to 18% of transactions abort twice and fall back to
serial mode. Since current HTM support does not report the size of
the working set on transaction abort, it would be beneficial for pro-
grammers to be able to suggest retry policies on a transaction-by-
transaction basis: for queues that are expected to be un-contended,
more retries before serialization might be appropriate.

Figure 2 shows the performance of the TM algorithms on
PBZip2. STM + Spin performs the worst in all conditions except
for Figure 2d. This is because spinning not only wastes threading
resources, but also increases contention between caches. In Fig-
ure 2d HTM + CondVar performs worse than STM + Spin in some
cases because nearly 20% of HTM transactions fall back to the se-
rial path. Note, however, that STM + CondVar and STM + CondVar
+ NoQuiesce both outperform the baseline in Figures 2a and 2f, at

least for high thread count. At low threads, conflicts are rare, and
STM instrumentation overheads dominate.

Disabling quiescence offers mixed results. There is, necessar-
ily, extra tracking and instrumentation overhead, which much be
offset. In Figures 2d and 2e, disabling quiescence offers the best
performance at high concurrency levels, which correspond to the
scenarios in which the most gain is expected. Note, too, that HTM +
CondVar often outperforms the baseline, achieving a peak speedup
of 8.5% in Figure 2a. In this case, the fallback rate remains high
(15%-18%), suggesting that finely tuning fallback strategies would
offer even better performance.

6.2 x265
To evaluate x265, we consider three file sizes: small (38MB),
medium (735MB), and a real movie downloaded from Netflix
(3810M). The application defaults to a pool of 8 worker threads, 3
frame threads, and a main thread. In our experiments, we vary the
number of worker threads, and again consider the five algorithms
from above. The impact of spinning is disastrous in this workload,
even at low thread counts. To maintain readability in Figure 3, we
plot speedup relative to the single-thread pthread execution, instead
of execution time.

The peak performance of HTM is 9.5% better than pthreads
at 4 threads (Figure 3b). Moreover, HTM outperforms pthreads in
almost every case. Again, this is with untuned GCC HTM support:
the abort rates in Figure 4 suggest that even better performance is
possible by tuning the fallback policy.

Again, disabling quiescence did not have a significant or con-
sistent impact on performance. In the worst cases, it even decreases
performance relative to STM + CondVar. In Figure 4, we find that
disabling quiescence results in higher abort rates for the STM ex-
ecution. As discussed in Section 3, quiescence is leading to trans-
action start times becoming bursty, where they would otherwise
follow a more normal distribution over time.

Across all experiments, we observe many situations in which
STM + CondVar and HTM outperform the pthread baseline. This
result is in spite of the lock erasure effects of TMTS-based trans-
actional lock elision. However, we required support for conditional
synchronization, which is currently lacking in the TMTS. We were
particularly surprised by the performance of STM; its overheads
at transaction boundaries, and on every access of shared memory,
were still less than the gain in performance. A variety of optimiza-
tions could take this result even further, such as reducing latency for
small transactions [5], making quiescence avoidance conditional on
the number of threads (to reduce bookkeeping costs at low thread
counts), and moving code out of the critical section via atomic de-
ferral [25].

7. Conclusions and Future Work
In this paper, we applied the C++ TMTS to elide locks in two real-
world programs, PBZip2 and x265. In both cases, the programs
were already carefully crafted to avoid lock contention and to scale.
Nonetheless, transactional lock elision improved performance by
up to 9%. To the best of our knowledge, this is the first example
of the TMTS, as implemented in the GCC compiler, improving
the performance of real-world code. Moreover, the improvement
spanned both hardware and software implementations of TM.

Unfortunately, our experience does not validate the expectation
that transactional lock elision will be easy. In x265, the most im-
portant critical section was not serializable, and we could not trans-
actionalize it without understanding several thousand lines of code,
and changing the way in which threads interacted with one of the
central queues in the program. There is exciting future work in this
area, exploring the conditions under which an unmodified critical
section can and cannot be transactionalized. Our intuition is that
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Figure 2: Performance of Transactionalized PBZip2
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Figure 3: Performance of Transactionalized x265

two-phase locking is a sufficient condition, but a more formal study
is needed.

We also showed that quiescence avoidance need not be thought
of as an all-or-nothing proposition. Specifically, TMTS-based lock
elision introduces orderings that a fine-grained locking program
would not display. Allowing programmers to avoid these over-
heads, without sacrificing composability, will help STM execu-
tions of a program. However, our experiments show that quiescence
avoidance is a delicate proposition, and does not unilaterally im-
prove performance.

Lastly, our experience suggests that much more work is needed
before programmers can use TM easily. Library support remains
inconsistent, and even a fully-implemented specification is insuf-
ficient to address third-party libraries, such as the vector math li-
brary used by x265. We encourage continued effort in this direc-

tion. We have shown that TMTS-based lock elision can produce
performance gains, and thus that further investment in transaction-
safe libraries will have long-term value.
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