
Practical Experience with Transactional Lock Elision

Tingzhe Zhou, PanteA Zardoshti and Michael Spear

Lehigh University, Bethlehem, PA

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17 1

Two Programming Models

2/15/2017 2

• Transactions First

– Input: TM features (self-abort, defer actions, CM)

– Create new concurrent programs/modules

• Transactional Lock Elision (TLE)

– Input: lock based program

– TM as a mechanism for achieving lock elision

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

Scalability

Scalability

Programmability

Create concurrent program from scratch.

Easier to use in existing concurrent programs.

Contributions

2/15/2017 3

• Evaluate the effectiveness of TLE on real-world

programs

– Transactionalizing two highly optimized programs

(PBZip2 and x265)

– C++ TM technical specification (TMTS)

• Extend TM API

– TM.NoQuiesce()

• New insights

– Existing tools and libraries

– Obstacles unique to TLE

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

Outline

2/15/2017 4

• PBZip2 and x265

• Quiescence and Lock Elision

• Obstacles, solutions and open challenges

• Evaluation

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

PBZip2[1]

2/15/2017 5Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

[1] Source: http://compression.ca/pbzip2/

[--]

[-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----]

PBZip2 is the parallel version of the bzip2 file compression algorithm.

Data Format

bzip2

pbzip2

Execution

Queue

P CC C … …

Time

Serial Write Stage

X265

2/15/2017 6Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

HEVC wavefront parallel processing

Frame

Slices

Coding Tree Units

1 main thread, m frame threads and n threads in pools.

Data Format

Threading

1 2

3

Outline

2/15/2017 7

• PBZip2 and x265

• Quiescence and Lock Elision

• Obstacles, solutions and open challenges

• Evaluation

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

Privatization Problem

2/15/2017 8Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

__ transaction_atomic {

node = L->head

L->head = null

}

// L is privatized

process(node)

__transaction_atomic{

i_node = locate(L, i)

if (i_node != null)

i_node->data = process(i_node)

}

T1 T2

T1

T2

privatize
Non-Tx

(privatize L) (use L)

speculative execution

(must abort)

(use L)

Time

data race

Quiescence in C++ TMTS

2/15/2017 9Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

__ transaction_atomic {

node = L->head

L->head = null

}

// L is privatized

process(node)

__transaction_atomic{

i_node = locate(L, i)

if (i_node != null)

i_node->data = process(i_node)

}

T1 T2

T1

T2

privatize

(privatize L)

speculative execution

(must abort)

(use L)

Time

wait

Non-Tx

(use L)

Quiescence and Lock Elision

2/15/2017 10Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• Linear overhead

– implementation

• Force the transaction to delay after it commits

– granularity of quiescence

Three Problems

T
im

e

Stack Tx Queue Tx

quiescence

Commit

Quiescence and Lock Elision

2/15/2017 11Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• Linear overhead

• Force the transaction to delay after it commits

• Transaction congestion

Three Problems

quiescence

Commit

Stack Tx Stack Tx

T
im

e

conflict

retry

another

stack op

(abort)

Quiescence overhead in C++ TMTS

2/15/2017 12Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

Stamp genome benchmark

Quiescence for all Tx

TM.NoQuiesce on READ Only Tx

TM.NoQuiesce on ALL Tx

Programmatically Avoiding Quiescence

2/15/2017 13Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• Transactions need quiescence

– transition data to non-transactional state

– last transaction executed by the thread before it

accesses data non-transactionally

• Disable quiescence for all transactions

– improve performance

– not compositional

• A new API function: TM.NoQuiesce

– indicates transaction should NOT quiesce after it commits

– free to be ignored (especially in HTM)

Programmatically Avoiding Quiescence

2/15/2017 14Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• The producer never needs quiesce

• The consumer only quiesces if it succeeds in

getting an element

Pitfalls

2/15/2017 15Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• Tx SC requires a global total order

• TM.NoQuiesce asserts dependencies with

transactions in one thread are enough to provide

happens-before

• We expect these errors to be easy to identify

and fix using transactional race detectors

• TM.NoQuiesce can increase scalability

correct program racy program

TM.NoQuiesce

Outline

2/15/2017 16

• PBZip2 and x265

• Quiescence and Lock Elision

• Obstacles, solutions and open challenges

• Evaluation

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

Naïve Transactionalization

2/15/2017 17Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• It should be easy to transactionalize code

• Critical sections in PBzip2 are transaction

friendly

– small critical sections

– No expensive functions and system calls (file ops)

• x265 could NOT be naively transactionalized

– Pattern of lock acquisitions and releases was clearly

not two-phase locking

Problems of Naïve Transactionalization

2/15/2017 18Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

Lock(&A)

… …

Lock(&B)

m_task = elem.size()

unLock(&B)

wait until m_task == 0

… …

unLock(&A)

… …

Lock(&B)

m_task --;

unLock(&B)

… …

Frame thread

worker threads

1. Add ’’ready flag”

2. Move process outside of TM

3. Check the flag

Two Phase Locking ?

2/15/2017 19Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• Can it be proven that naive transactionalization

is always correct for critical sections that obey

two-phase locking?

• Under what conditions will naive

transactionalization of non-two-phase locking

code remain safe?

Outline

2/15/2017 20

• PBZip2 and x265

• Quiescence and Lock Elision

• Obstacles, solutions and open challenges

• Evaluation

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

Evaluation

2/15/2017 21Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• Preserve the original structure of the source

code

– “ready” flag in x265

– Additional TM.NoQuiesce calls

– Minor refactoring to be able to use TMCondvars

• Environment

– 4 core/8 thread Intel Core i7-4770 CPU, 3.40GHz,

8GB RAM, Intel TSX for HTM.

– Linux 4.3, GCC 5.3.1

• Fallback-strategy (GCC default)

– ml_wt (TinySTM) X 100 serial path

– htm (RTM) X 2 serial path

PBZip2

2/15/2017 22Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• Two independent operations

– Compress

– Decompress

• Variables configuration

– worker threads: 1 to 8

– block size: 100K, 300K, 900K. (650M test file)

• Five algorithms

– pthread

– STM + spin

– STM + condVar

– STM + condVar + TM.NoQuiesce

– HTM + condVar

PBZip2

2/15/2017 23Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

Compress, 900K

Compress, 300K

Compress, 100K

1. STM + Spin performs the worst in all

conditions.

2. HTM has good performance in most cases,

although 13% to 18% of transactions abort

twice and fall back to serial path.

3. HTM outperforms the baseline, achieving a

peak speedup of 8.5%.

PBZip2

2/15/2017 24Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

De-compress, 900K

De-compress, 100K
De-compress, 300K

1. HTM performs worse than STM because

nearly 20% of HTM transactions fall back to

the serial path.

2. STM+Cond and NoQuiesce both could

outperform the base line.

3. Disabling quiescence offers mixed results

x265

2/15/2017 25Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

735M

38M

3810M

Base line: single-thread pthread execution.

1 main thread , 3 frame threads, X worker threads

The peak performance of HTM is 9.5% better than

pthreads at 4 threads

TM.NoQuiesce performance is unstable.

x265

2/15/2017 26Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

10,000,000 Tx commit

Conclusions and Future Work

2/15/2017 27Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

• Applied C++ TMTS to elide locks in two programs

• Improved performance by up to 9%

• Our experience does not validate the expectation that

transactional lock elision will be easy

• Quiescence avoidance need not be thought of either YES

or NO

• We are at a point where we can start making small

improvements that make a big difference!

Q & A

2/15/2017 28

• Thank you !

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM‘17

