Practical Experience with Transactional Lock Elision

Tingzhe Zhou, PanteA Zardoshti and Michael Spear

Lehigh University, Bethlehem, PA

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

Two Programming Models

« Transactions First
— Input: TM features (self-abort, defer actions, CM)
— Create new concurrent programs/modules

Scalability Programmability

Create concurrent program from scratch.

« Transactional Lock Elision (TLE)
— Input: lock based program
— TM as a mechanism for achieving lock elision

Scalability

Easier to use in existing concurrent programs.

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

Contributions

 Evaluate the effectiveness of TLE on real-world
programs

— Transactionalizing two highly optimized programs
(PBZip2 and x265)

— C++ TM technical specification (TMTS)

« Extend TM API
— TM.NoQuiesce()

* New Insights
— EXisting tools and libraries
— Obstacles unique to TLE

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

Outline

 PBZip2 and x265
* Quiescence and Lock Elision
* Obstacles, solutions and open challenges

 Evaluation

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

' PBZipZ[l]

PBZip2 is the parallel version of the bzip2 file compression algorithm.

Data Format

DZIP2 | [Fmmmmmmm e e e e e]

s e e B B b e e o AN e e by e b

Execution

Time e Queue

Serial Write Stage

[1] Source: http://compression.ca/pbzip2/

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17

' X265

Data Format

Frame

l

Slices

|

Coding Tree Units

_ HEVC wavefront parallel processing
Threading

1 main thread, m frame threads and n threads in pools.

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17 6

Outline

 PBZip2 and x265
 Quiescence and Lock Elision
* Obstacles, solutions and open challenges

 Evaluation

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17

' Privatization Problem

T1 T2
__transaction_atomic { __transaction_atomic{
node = L->head i_node = locate(L, i)
L->head = null if (i_node != null)
} |_node->data = process(i_node)
}
/Il Lis privatized
process(node)
ctart the transaction privatize
Non-Tx
(privatize L) \ (use L)
T1 LN —
1N
\ “\\\ 5
T2 \“ A (use
/‘ (must aBort) data race
J

speculative execution

v

Time

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

' Quiescence in C++ TMTS

T1

___transaction_atomic {
node = L->head
L->head = null

12

__transaction_atomic{
|_node = locate(L, 1)
iIf (I_node != null)

} |_node->data = process(i_node)
/Il Lis privatized
process(node)
otart the transaction privatize
Non-Tx
(privatize L) \ wait (use L)
T1 LN e
1NN
N
T2 v \\‘ (use L)
/ (mu‘st\ aﬁ)ort)
speculative execution

v

Time

2/15/2017

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17

Quiescence and Lock Elision

Three Problems

* Linear overhead
— Implementation

* Force the transaction to delay after it commits
— granularity of quiescence

Stack Tx Queue Tx

awi]

Commit

AN

quiescence |

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

Quiescence and Lock Elision

Three Problems

* Linear overhead
* Force the transaction to delay after it commits
« Transaction congestion

Stack Tx Stack Tx
— Commit
3 AN N
o | » (abort)
quiescence -
— —— retry
another ___99_rjﬂi_q__
stack op
4 .

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

11

% Quiescence overhead in C++ TMTS

40 |

10

50
D
Q
E
C
Re]

3 20
(0)]
>
LL

0

2/15/2017

Stamp genome benchmark

30 |

Baseline —*—
NoProxy —=—
NoQuiesce e —

|le—

Quiescence for all Tx

i V\

TM.NoQuiesce on READ Only Tx

N TM.NoQuiesce on ALL Tx

2 4 6 8

Number of Threads

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17 12

Programmatically Avoiding Quiescence

« Transactions need guiescence
— transition data to non-transactional state

— last transaction executed by the thread before it
accesses data non-transactionally

* A new API function: TM.NoQuiesce
— Indicates transaction should NOT quiesce after it commits
— free to be ignored (especially in HTM)

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17 13

Programmatically Avoiding Quiescence

Listing 2: Producer/consumer workload

1
2
3
4

// Producer thread

while frue do
atomic_cancel
if —c. full() then

L c.insert(produce())

| TM.NoQuiesce()

1
2
3
4

tn

// Consumer thread

while frue do

if

atomic_cancel

if ~c.empty() then
| tmp + c.get()

else
tmp < nil

T M.NoQuiesce()

tmp # nil then

 use(tmp)

« The producer never needs quiesce

 The consumer only quiesces If it succeeds In
getting an element

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

14

Pitfalls

TM.NoQuiesce can increase scalability
TM.NoQuiesce

correct program = racy program

Tx SC requires a global total order

TM.NoQuiesce asserts dependencies with
transactions in one thread are enough to provide
happens-before

We expect these errors to be easy to identify
and fix using transactional race detectors

2/15/2017

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17

15

Outline

 PBZip2 and x265
* Quiescence and Lock Elision
* Obstacles, solutions and open challenges

 Evaluation

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17

16

Naive Transactionalization

* |t should be easy to transactionalize code

 Critical sections in PBzip2 are transaction
friendly

— small critical sections
— No expensive functions and system calls (file ops)

« X265 could NOT be naively transactionalized

— Pattern of lock acquisitions and releases was clearly
not two-phase locking

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17 17

' Problems of Naive Transactionalization

Listing 3: Example of non-serializable critical section in Listing 4: A ready flag avoids lock nesting, facilitating
_X265. transactionalization.
/' LOCK for output queue(i) // Process(element) #/ LOCK for output queue(i)
1 QutputQueue.lock() process(element) 1 OutputQueue.lock()
2 element = newQueueNode() 9 m_lock.lock() 2 element = newQueueN ode()
3 OutputQueue.enqueue(element) 10 m-task = element.size()| 3 OutputQueue.enqueue(element)
|4 process(element) 11 m-lock.unlock() 4 element.ready = false €
5 OutputQueue.unlock() 12 sub_working() 5 QutputQueue.unlock()
13 Wait() ﬁlprocess(eimnent)
14 return 7 QutputQueue.lock()

8 element.ready = true

/ Tusk for working threads o QutputQueue.unlock()

sub_working() .\
// LOCK for output queue(ii) L # LOCK for output queue(ii)
6 OutputQueue.lock() 15 m_lock.lock() 10 OQutputQueue.lock()

7 OutputQueue.dequeue() 1 mtask — — if OutpurQueune.peek().ready o

s OutputQueue.unlock() 17 mlock. unlock() n | element = OutputQueue.dequeue()

12 QuitputQueue.unlock()

Frame thread

Eoek(&A). worker threads
Cloeed 1. Add ’ready flag”
m_task = elem.size() R 2. Move process outside of TM
unLock(&B) unLock(&B) 3. Check the flag
wait until m_task==0
...... |

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17 18

Two Phase Locking ?

e Can it be proven that naive transactionalization
IS always correct for critical sections that obey
two-phase locking?

« Under what conditions will naive
transactionalization of non-two-phase locking
code remain safe?

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

19

Outline

 PBZip2 and x265
* Quiescence and Lock Elision
* Obstacles, solutions and open challenges

« Evaluation

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17

20

Evaluation

* Preserve the original structure of the source
code

— “ready” flag in x265
— Additional TM.NoQuiesce calls
— Minor refactoring to be able to use TMCondvars

* Environment

— 4 core/8 thread Intel Core i7-4770 CPU, 3.40GHz,
8GB RAM, Intel TSX for HTM.

— Linux 4.3, GCC 5.3.1

« Fallback-strategy (GCC default)
— ml_wt (TinySTM) X 100 -> serial path
— htm (RTM) X 2 - serial path

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

21

PBZip2

« Two independent operations
— Compress
— Decompress

« Variables configuration

— worker threads: 1to 8
— block size: 100K, 300K, 900K. (650M test file)

* Five algorithms
— pthread
— STM + spin
— STM + condVar
— STM + condVar + TM.NoQuiesce
— HTM + condVar

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

22

' PBZip2

w0 [}
30 r

20 r

Execution time(s)

10 r

STM + CondVar + NoQuiesce =g

i pthréad ——
STM+Spin
STM+CondVar

HTM + CondVar]
Compress, 100K

45

2

3 4 5 6 7 8
Number of Worker Threads

40
35
30
25 r
20 r
15
10

Execution time(s)

Compress, 300K

2/15/2017

2 3 4 5 6 7 8

Number of Worker Threads

Execution time(s)

45 ¥ x ' ¥ ' ¥ '
40 r Compress, 900K 1
35 » -
30 r \
25 [Nox

20 r N

\&%\—%\ N
o *\3{%
10 r e

1 2 3 4 5 6 7 8
Number of Worker Threads

STM + Spin performs the worst in all
conditions.

HTM has good performance in most cases,
although 13% to 18% of transactions abort
twice and fall back to serial path.

HTM outperforms the baseline, achieving a
peak speedup of 8.5%.

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17 23

PBZip2

2

5
o0 L% De-compress, 100K
0
@
£ 15
C
.0
:::s 10 % -
(O]
5 k - . -
O x n n x x x n n
1 2 3 4 5 6 7 8
Number of Worker Threads
25 v .
pthread —*
R STM+Spin
20 STM+CondVar
» .STM + CondVar + NoQuiesce —<—
Ko \ HTM + CondVar
E 1514 i
< De-compress, 900K
30 S
5F .
O n n n n n n n
1 2 3 4 5 6 7
Number of Worker Threads
2/15/2017

Execution time(s)

25
20 1? De-compress, 300K
15 r \

10 + v<\

1 2 3 4 5 6 7 8
Number of Worker Threads

1. HTM performs worse than STM because
nearly 20% of HTM transactions fall back to
the serial path.

2. STM+Cond and NoQuiesce both could
outperform the base line.

3. Disabling quiescence offers mixed results

Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17 24

X265

STM+Spin == HTM+CondVar
STM+CondVar == pthread —— 735'\/'

7))

TM+CondVar+NoQuiesce &5z - =

XA

w
T
]
n
[6)]
R

K
RRRRRA
RRRRR

X
XX

22030

XX
S5

29502
X

25 |-3810M |

RRRRRR,

XX
02

XX
N
RHRK

RIS
s
T

RRX.
20706

2
20703

%
$2028
RHRIR

RRRK

RRRRRK:

1.5 :

$20%
2RE
KR

bt
5

202050

RRRRK
XRRRK
XXX

0

1.5

4203

R

XXX
0%

Speedup

SRR

K

Speedup

o
R

s

X

XRRR

—_
RRRR

092
R
Iz

T

02
%2
RRR:

R
R

2

XK
ZOZETT0
223

RKK
o0
RIS

2030
SRR
1

0.5

ST
%7

BRI

0.5

R

0T

TOTeTee

R

T
RRRRRR,

e

o

1 2 3 4 5 6 7 8 1 2 3 4 6 7
Number of Worker Threads Number of Worker Threads

38M

2.5
Base line: single-thread pthread execution.

1 main thread , 3 frame threads, X worker threads

1.5

RRRRRRRIRRRRKS
2R

XXX

2%
XX

X

o0ZeTe%8
296

SRR

2639

Speedup

RS

The peak performance of HTM is 9.5% better than
pthreads at 4 threads

o000zl

SRR

0.5

920203

XXX

XK

8 TM.NoQuiesce performance is unstable.

Number of Worker Threads
2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM17 25

15 X265

1%
__ 0.8%
>
% 0.6%
P
© 0.4%
oC
0.2%
0%
2/15/2017 Tingzhe Zhou

STM+CondVar -7
~ STM+CondVar+NoQuiesce &= [i
HTM+CondVar] 3
N j 4]
1

> 3 4 5 6 7 8
Number of Worker Threads

10,000,000 Tx commit

: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

26

Conclusions and Future Work

« Applied C++ TMTS to elide locks in two programs
* Improved performance by up to 9%

« Our experience does not validate the expectation that
transactional lock elision will be easy

* Quiescence avoidance need not be thought of either YES
or NO

« We are at a point where we can start making small
Improvements that make a big difference!

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

27

'Q&A

* Thank you !

2/15/2017 Tingzhe Zhou: Practical Experience with Transactional Lock Elision | TRANSACT/WTTM 17

28

