
Combining HTM and RCU to Implement Highly
Efficient Balanced Binary Search Trees

Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas and Nectarios Koziris

National Technical University of Athens (NTUA)

School of Electrical and Computer Engineering (ECE)

Computing Systems Laboratory (CSLab)

{jimsiak,knikas,goumas,nkoziris}@cslab.ece.ntua.gr

http://research.cslab.ece.ntua.gr

Transact/WTTM 2017

http://research.cslab.ece.ntua.gr/

Outline

• Binary Search Trees (BSTs)

• Concurrent BSTs

• RCU-HTM

• Experimental results

• Conclusions & Future work

2Siakavaras et. al cslab@ntua

3

BINARY SEARCH TREES

Siakavaras et. al cslab@ntua

Binary Search Trees (BSTs)

Siakavaras et. al cslab@ntua

• A classic binary tree with an additional property:

• Nodes in left subtree have keys less than the key of the root, nodes in right

subtree have keys greater than the root.

• Most commonly used to implement dictionaries:

• <key,value> pairs

• 3 operations: lookup(key), insert(key, value) delete(key)

8

3 10

1 6 14

4 7 13

4

Internal vs. External BSTs

5Siakavaras et. al cslab@ntua

8

3 10

1 6 14

8

3 10

1 6

1 3 6 8

10 14

Internal External

Internal: <key,value> pairs in every node

External: values only in leaves, internal nodes only contain keys.

- External trees simplify the delete() operation

- They require twice as much memory

- Longer traversal paths

Deletion in an Internal BST

6Siakavaras et. al cslab@ntua

Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

6Siakavaras et. al cslab@ntua

Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

6Siakavaras et. al cslab@ntua

8

3 10

1 6 14

Example: delete(10)

Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

6Siakavaras et. al cslab@ntua

8

3

1 6 14

Example: delete(10)

Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

• Deleting a node with two children is more
complicated

– Need to find successor, swap keys and remove successor
node

– Successor may be many links away

Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

• Deleting a node with two children is more
complicated

– Need to find successor, swap keys and remove successor
node

– Successor may be many links away

7Siakavaras et. al cslab@ntua

8

3 10

1 6 14

Example: delete(8)

Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

• Deleting a node with two children is more
complicated

– Need to find successor, swap keys and remove successor
node

– Successor may be many links away

7Siakavaras et. al cslab@ntua

8

3 10

1 6 14

Example: delete(8) successor

Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

• Deleting a node with two children is more
complicated

– Need to find successor, swap keys and remove successor
node

– Successor may be many links away

7Siakavaras et. al cslab@ntua

3 10

1 6 14

Example: delete(8) successor

10

Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

• Deleting a node with two children is more
complicated

– Need to find successor, swap keys and remove successor
node

– Successor may be many links away

7Siakavaras et. al cslab@ntua

3

1 6 14

Example: delete(8) successor

10

Deletion in an External BST

• Deletion is always simple

8Siakavaras et. al cslab@ntua

Deletion in an External BST

• Deletion is always simple

8Siakavaras et. al cslab@ntua

8

3 10

1 6

1 3 6 8

10 14

Example: delete(8)

Deletion in an External BST

• Deletion is always simple

8Siakavaras et. al cslab@ntua

8

3 10

1

1 3 6

10 14

Example: delete(8)

Unbalanced vs. Balanced BSTs

9Siakavaras et. al cslab@ntua

8

3

10

1 6

14

4 7

13

8

3 13

1 6 10 14

4 7

8

4 13

3 7 10 14

1 6

Unbalanced Tree Red-Black Tree AVL Tree

+ Balanced trees limit the height of the tree (i.e., the length of maximum path) to

provide bounded and predictable traversal times

- Rebalancing requires additional effort after insertions/deletions

0 0

1 1

2

3

1

0 0

Insertion in an Unbalanced BST

10Siakavaras et. al cslab@ntua

int bst_insert (bst_t * bst , int key, void *value)

{

traverse_bst (bst , key);

if (key was found) return 0;

insert_node (bst , key, value);

return 1;

}

Insertion in an Unbalanced BST

10Siakavaras et. al cslab@ntua

int bst_insert (bst_t * bst , int key, void *value)

{

traverse_bst (bst , key);

if (key was found) return 0;

insert_node (bst , key, value);

return 1;

}
8

3

10

1 6

14

4 7

13

Example:
bst_insert (key = 2)

Insertion in an Unbalanced BST

10Siakavaras et. al cslab@ntua

traverse_bst (bst , key);

8

3

10

1 6

14

4 7

13

Example:
bst_insert (key = 2)

Insertion in an Unbalanced BST

10Siakavaras et. al cslab@ntua

8

3

10

1 6

14

4 7

13

Example:
bst_insert (key = 2)

insert_node(bst, key, value);

2

Insertion in a Balanced BST

11Siakavaras et. al cslab@ntua

int bbst_insert (bbst_t * bst , int key, void *value)

{

traverse_bbst (bbst , key);

if (key was found) return 0;

insert_node_and_rebalance (bbst , key, value);

return 1;

}

Insertion in a Balanced BST

11Siakavaras et. al cslab@ntua

int bbst_insert (bbst_t * bst , int key, void *value)

{

traverse_bbst (bbst , key);

if (key was found) return 0;

insert_node_and_rebalance (bbst , key, value);

return 1;

}

Example:
bst_insert (key = 2)

8

4 13

3 7 10 14

1 6
0 0

1 1

2

3

1

0 0

Insertion in a Balanced BST

11Siakavaras et. al cslab@ntua

traverse_bbst (bbst , key);

Example:
bst_insert (key = 2)

8

4 13

3 7 10 14

1 6
0 0

1 1

2

3

1

0 0

Insertion in a Balanced BST

11Siakavaras et. al cslab@ntua

Example:
bst_insert (key = 2)

insert_node_and_rebalance(bbst, key, value);

8

4 13

3 7 10 14

1 6
0 0

1 1

2

3

1

0 0

2

Insertion in a Balanced BST

11Siakavaras et. al cslab@ntua

Example:
bst_insert (key = 2)

insert_node_and_rebalance(bbst, key, value);

8

4 13

3 7 10 14

1 6
0 0

1 1

2

3

1

0 0

2

8

4 13

2 7 10 14

1 6
0 0

1
1

2

3

1

0 0

3
0

28

CONCURRENT BINARY SEARCH
TREES

Siakavaras et. al cslab@ntua

Concurrent BSTs

There are 2 challenges for concurrent internal and balanced
BSTs:
1. The deletion of a node with 2 children requires exclusive access to the

whole path from the node to the successor.

2. Rebalancing requires several modifications that need to be performed in
a single atomic step.

Proposed non-blocking and lock-based concurrent BSTs are
either:
• Unbalanced [Natarajan PPoPP’14, Howley SPAA’12, Ellen PODC’10]

• Relaxed balanced [Bronson PPoPP’10, Drachsler PPoPP’14, Brown
PPoPP’14]

• External [Natarajan PPoPP’14, Ellen PODC’10]

• Partially external [Bronson PPoPP’10]

13Siakavaras et. al cslab@ntua

Concurrent RCU-based BSTs

• Read-Copy-Update (RCU)
– Modifications are performed in copies and not in place. Copies are

atomically installed in the shared data structure.

– Readers may proceed without any synchronization and without
restarting

– Updaters need to be explicitly synchronized (most commonly only a
single updater is allowed to operate)

Siakavaras et. al cslab@ntua 30Siakavaras et. al cslab@ntua

Concurrent RCU-based BSTs

• Read-Copy-Update (RCU)
– Modifications are performed in copies and not in place. Copies are

atomically installed in the shared data structure.

– Readers may proceed without any synchronization and without
restarting

– Updaters need to be explicitly synchronized (most commonly only a
single updater is allowed to operate)

Siakavaras et. al cslab@ntua 31Siakavaras et. al cslab@ntua

Example:
bst_insert (key = 2) 8

4 13

3 7 10 14

1 6
0 0

1 1

2

3

1

0 0

Concurrent RCU-based BSTs

• Read-Copy-Update (RCU)
– Modifications are performed in copies and not in place. Copies are

atomically installed in the shared data structure.

– Readers may proceed without any synchronization and without
restarting

– Updaters need to be explicitly synchronized (most commonly only a
single updater is allowed to operate)

Siakavaras et. al cslab@ntua 32Siakavaras et. al cslab@ntua

Example:
bst_insert (key = 2) 8

4 13

3 7 10 14

1 6
0 0

1 1

2

3

1

0 0

2

1’
0

3’
0

Concurrent RCU-based BSTs

• Read-Copy-Update (RCU)
– Modifications are performed in copies and not in place. Copies are

atomically installed in the shared data structure.

– Readers may proceed without any synchronization and without
restarting

– Updaters need to be explicitly synchronized (most commonly only a
single updater is allowed to operate)

Siakavaras et. al cslab@ntua 33Siakavaras et. al cslab@ntua

Example:
bst_insert (key = 2) 8

4 13

7 10 14

6
0

1

2

3

1

0 0

2

1’
0

3’
0

Concurrent RCU-based BSTs

• Read-Copy-Update (RCU)
– Modifications are performed in copies and not in place. Copies are

atomically installed in the shared data structure.

– Readers may proceed without any synchronization and without
restarting

– Updaters need to be explicitly synchronized (most commonly only a
single updater is allowed to operate)

Siakavaras et. al cslab@ntua 34Siakavaras et. al cslab@ntua

Example:
bst_insert (key = 2) 8

4 13

7 10 14

6
0

1

2

3

1

0 0

2

1’
0

3’
0

Old readers may still

traverse old versions of

nodes. New readers will

see the new nodes.

Concurrent RCU-based BSTs

• Read-Copy-Update (RCU)
– Modifications are performed in copies and not in place. Copies are

atomically installed in the shared data structure.

– Readers may proceed without any synchronization and without
restarting

– Updaters need to be explicitly synchronized (most commonly only a
single updater is allowed to operate)

Siakavaras et. al cslab@ntua 35Siakavaras et. al cslab@ntua

Example:
bst_insert (key = 2) 8

4 13

7 10 14

6
0

1

2

3

1

0 0

2

1’
0

3’
0

Old readers may still

traverse old versions of

nodes. New readers will

see the new nodes.

Updaters can safely replace

parts of the tree as only a

single updater is allowed.

Concurrent RCU-based BSTs

• Read-Copy-Update (RCU)
– Modifications are performed in copies and not in place. Copies are

atomically installed in the shared data structure.

– Readers may proceed without any synchronization and without
restarting

– Updaters need to be explicitly synchronized (most commonly only a
single updater is allowed to operate)

Siakavaras et. al cslab@ntua 36Siakavaras et. al cslab@ntua

Example:
bst_insert (key = 2) 8

4 13

7 10 14

6
0

1

2

3

1

0 0

2

1’
0

3’
0

Old readers may still

traverse old versions of

nodes. New readers will

see the new nodes.

Updaters can safely replace

parts of the tree as only a

single updater is allowed.

Single updater RCU tree:

• Multiple readers

• Single updater

Citrus RCU tree [Arbel PODC’14]:

• Multiple updaters using fine-grain locks.

• Unbalanced tree to enable fine-grain locking

Concurrent HTM-based BSTs

• Hardware Transactional Memory (HTM)
– Avoids STM’s huge overheads

– Allows the modification of multiple locations atomically → good fit for the
rebalancing phase in a BBST

• HTM-based BSTs:
– Coarse-grained HTM (cg-htm):

• Each operation enclosed in a single transaction

+ Easy to implement

- Large transactions (increased conflict probability)

– Consistency-Oblivious-Programming HTM (cop-htm) [Avni TRANSACT’14]:
• The traversal is performed outside the transaction

• The executed transaction includes 2 steps:

o Validate that the traversal ended at the correct node

o Insert/Delete the node and rebalance if necessary

+ Shorter transactions than cg-htm

- Traversals (and consequently lookup operations) may need to restart

15Siakavaras et. al cslab@ntua

38

RCU-HTM

Siakavaras et. al cslab@ntua

RCU-HTM

Combines RCU with HTM in an innovative way and
provides trees with:

1. Asynchronized traversals (thanks to RCU)
– Oblivious of concurrent updates in the tree

– No locks, no transactions or any other synchronization

– No restarts

2. Concurrent updaters (thanks to HTM)
– All updates are performed in copies

– Modified copies are first validated and then installed in the tree

– An HTM transaction is used for the validation+installation phase

• HTM transaction includes several reads but only a single write →
minimized conflict probability

Siakavaras et. al cslab@ntua 17

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

Example: insert(key = 1)

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

Example: insert(key = 1)

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

Example: insert(key = 1)

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

Example: insert(key = 1)

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

1
0

connection_point

copy_root

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

Example: insert(key = 1)

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

1
0

2’
1

connection_point

copy_root

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

Example: insert(key = 1)

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

1
0

2’
1

3’
2

copy_root

connection_point

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

Example: insert(key = 1)

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

1
0

2’
1

3’
2

5’
3

copy_root

connection_point

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

Example: insert(key = 1)

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

connection_point

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

Example: insert(key = 1)
1

0

2’
1

3’
2

5’
1

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

connection_point

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

3. Validate the modified copy
• For each copied node check that children pointers haven’t been modified since we copied the node

• Also validate the access path followed during traversal

Example: insert(key = 1)
1

0

2’
1

3’
2

5’
1

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

connection_point

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

3. Validate the modified copy
• For each copied node check that children pointers haven’t been modified since we copied the node

• Also validate the access path followed during traversal

4. Install the copy
• Change connection_point’s child

Example: insert(key = 1)
1

0

2’
1

3’
2

5’
1

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

connection_point

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

3. Validate the modified copy
• For each copied node check that children pointers haven’t been modified since we copied the node

• Also validate the access path followed during traversal

4. Install the copy
• Change connection_point’s child

Example: insert(key = 1)
1

0

2’
1

3’
2

5’
1

RCU-HTM: insert operation

18Siakavaras et. al cslab@ntua

7

5

3 6

2
0

1
0

2

3

4
0

...

connection_point

1. Traverse the tree to locate the insertion point
• During traversal we maintain a stack of pointers to the traversed nodes

2. Perform the insertion and rebalance using copies
• The reverse traversal uses the saved stack of pointers

• For each copied node we store the observed children pointers

3. Validate the modified copy
• For each copied node check that children pointers haven’t been modified since we copied the node

• Also validate the access path followed during traversal

4. Install the copy
• Change connection_point’s child

Example: insert(key = 1)
1

0

2’
1

3’
2

5’
1

Steps 3 and 4 performed atomically inside an HTM transaction

If the validation in step 3 fails we abort the transaction and restart the operation

For the non-transactional fallback path we use a lock that allows only a single

updater.

RCU-HTM: delete operation

• Similar to insert

• One difference:

– When we delete a node with two children we need to copy
the whole path to its successor

19Siakavaras et. al cslab@ntua

54

EXPERIMENTAL RESULTS

Siakavaras et. al cslab@ntua

Experimental Setup

• Intel Broadwell-EP Xeon E5-2699 v4
– 22 cores / 44 hyperthreads @ 2.2GHz

– 64 GB of RAM

• GCC 4.9.2, -O3 optimizations enabled

• Scalable memory allocator (jemalloc)

• No memory reclamation

• All threads pinned to hardware threads (hyperthreads
enabled only at 44-threaded executions)

• Experiments:
– Threads run for 2 seconds, executing randomly chosen operations

(lookups/inserts/deletes)

– 3 Workloads: 100%, 80% and 20% lookups, and the rest equally divide
between insertions and deletions

– 3 tree sizes: 2K keys, 20K keys and 2M keys

Siakavaras et. al cslab@ntua 21

Comparison with HTM-based approaches

Siakavaras et. al cslab@ntua

0

100

200

300

400

500

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

avl-cg-htm avl-cop-htm avl-rcu-htm

22

0

10

20

30

40

50

60

70

80

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

Number of threads

2K keys

100% lookups

2M keys

100% lookups

Comparison with HTM-based approaches

Siakavaras et. al cslab@ntua

0

100

200

300

400

500

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

avl-cg-htm avl-cop-htm avl-rcu-htm

22

0

10

20

30

40

50

60

70

80

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

Number of threads

2K keys

100% lookups

2M keys

100% lookups

Read-only workloads

• No conflict/capacity aborts → all HTM-based trees scale

• RCU-HTM is constantly better due to 2 reasons:

• In small trees the overhead of starting/ending transactions is

visible in cg-htm and cop-htm.

• In large trees the transaction overhead is hidden but rcu-htm

is faster because of the smaller size of its nodes (e.g., cop-

htm also stores 3 more pointers: parent, prev, succ)

Comparison with HTM-based approaches

Siakavaras et. al cslab@ntua

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

23

0

10

20

30

40

50

60

70

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

Number of threads

avl-cg-htm avl-cop-htm avl-rcu-htm

2K keys

20% lookups

2M keys

20% lookups

Comparison with HTM-based approaches

Siakavaras et. al cslab@ntua

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

23

0

10

20

30

40

50

60

70

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

Number of threads

avl-cg-htm avl-cop-htm avl-rcu-htm

2K keys

20% lookups

2M keys

20% lookups

Write-dominated workloads

• In small trees both cg-htm and cop-htm suffer from conflict

aborts due to their larger transactions (see next slide).

• In large trees cop-htm also manages to avoid conflicts.

Comparison with HTM-based approaches

24Siakavaras et. al cslab@ntua

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 22 44

N
u

m
b

er
 o

f
tr

an
sa

ct
io

n
s

(M
ill

io
n

s)

Number of threads

2K keys – 20% lookups

Aborted Transactions Committed Transactions

c
g
-h

tm

c
o

p
-h

tm

rc
u

-h
tm

Comparison with HTM-based approaches

24Siakavaras et. al cslab@ntua

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 22 44

N
u

m
b

er
 o

f
tr

an
sa

ct
io

n
s

(M
ill

io
n

s)

Number of threads

2K keys – 20% lookups

Aborted Transactions Committed Transactions

c
g
-h

tm

c
o

p
-h

tm

rc
u

-h
tm

RCU-HTM executes much less transactions and suffers less aborts.

Comparison with RCU-based approaches

Siakavaras et. al cslab@ntua

0

100

200

300

400

500

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c) avl-rcu-mrsw bst-citrus avl-rcu-htm

25

0

10

20

30

40

50

60

70

80

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

Number of threads

2K keys

100% lookups

2K keys

20% lookups

avl-rcu-mrsw: writers synchronized using a single lock

bst-citrus: unbalanced BST, RCU for readers, fine-grain locks for writers [Arbel PODC’14]

Comparison with state-of-the-art

Siakavaras et. al cslab@ntua

0

100

200

300

400

500

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

avl-lb bst-lf avl-rcu-htm

26

0

10

20

30

40

50

60

70

80

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

Number of threads

2K keys

100% lookups

2K keys

20% lookups

avl-lb: relaxed balance lock-based AVL tree [Bronson PPOPP’10]

bst-lf: unbalanced lock-free (CAS-based) tree [Natarajan PPoPP’14]

Comparison with state-of-the-art

Siakavaras et. al cslab@ntua

0

20

40

60

80

100

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

avl-lb bst-lf avl-rcu-htm

27

0

10

20

30

40

50

60

70

80

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t
(M

o
p

s/
se

c)

Number of threads

2M keys

100% lookups

2M keys

20% lookups

65

CONCLUSIONS & FUTURE WORK

Siakavaras et. al cslab@ntua

Conclusions & Future Work

• RCU-HTM combines RCU with HTM and
provides concurrent BSTs that are:

– Internal

– Strictly balanced

– Efficient both for readers and updaters

• Future work

– Memory reclamation

– Formal proof of correctness (linearizability)

– More BSTs (e.g., B+-trees, Splay trees, etc.)

29Siakavaras et. al cslab@ntua

67

THANK YOU!

QUESTIONS?

ACKNOWLEDGMENT

Intel Corporation for kindly providing the Broadwell-EP server on which we

executed our experiments.

Siakavaras et. al cslab@ntua

