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BINARY SEARCH TREES
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Binary Search Trees (BSTs)
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• A classic binary tree with an additional property:

• Nodes in left subtree have keys less than the key of the root, nodes in right 

subtree have keys greater than the root.

• Most commonly used to implement dictionaries:

• <key,value> pairs

• 3 operations: lookup(key), insert(key, value) delete(key)
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Internal vs. External BSTs
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Internal External

Internal: <key,value> pairs in every node

External: values only in leaves, internal nodes only contain keys.

- External trees simplify the delete() operation 

- They require twice as much memory

- Longer traversal paths



Deletion in an Internal BST
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Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer
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Deletion in an Internal BST
• Deleting a node with one or zero children is easy

– Just change parent’s child pointer

• Deleting a node with two children is more 
complicated

– Need to find successor, swap keys and remove successor 
node

– Successor may be many links away
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Deletion in an External BST

• Deletion is always simple
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Unbalanced vs. Balanced BSTs
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+ Balanced trees limit the height of the tree (i.e., the length of maximum path) to 
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Insertion in an Unbalanced BST
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int bst_insert ( bst_t * bst , int key, void *value)

{

traverse_bst ( bst , key);

if (key was found) return 0;

insert_node ( bst , key, value);

return 1;

}
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10Siakavaras et. al               cslab@ntua

8

3

10

1 6

14

4 7

13

Example:
bst_insert (key = 2)

insert_node(bst, key, value);

2



Insertion in a Balanced BST
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int bbst_insert ( bbst_t * bst , int key, void *value)

{

traverse_bbst ( bbst , key);

if (key was found) return 0;

insert_node_and_rebalance ( bbst , key, value);

return 1;

}
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Insertion in a Balanced BST
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traverse_bbst ( bbst , key);

Example:
bst_insert (key = 2)

8

4 13

3 7 10 14

1 6
0 0

1 1

2

3

1

0 0



Insertion in a Balanced BST
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Example:
bst_insert (key = 2)

insert_node_and_rebalance(bbst, key, value);
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Insertion in a Balanced BST
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Example:
bst_insert (key = 2)

insert_node_and_rebalance(bbst, key, value);
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CONCURRENT BINARY SEARCH 
TREES
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Concurrent BSTs

There are 2 challenges for concurrent internal and balanced
BSTs:
1. The deletion of a node with 2 children requires exclusive access to the 

whole path from the node to the successor.

2. Rebalancing requires several modifications that need to be performed in 
a single atomic step.

Proposed non-blocking and lock-based concurrent BSTs are 
either:
• Unbalanced [Natarajan PPoPP’14, Howley SPAA’12, Ellen PODC’10]

• Relaxed balanced [Bronson PPoPP’10, Drachsler PPoPP’14, Brown 
PPoPP’14]

• External  [Natarajan PPoPP’14, Ellen PODC’10]

• Partially external [Bronson PPoPP’10]
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Concurrent RCU-based BSTs

• Read-Copy-Update (RCU)
– Modifications are performed in copies and not in place. Copies are 

atomically installed in the shared data structure.

– Readers may proceed without any synchronization and without 
restarting

– Updaters need to be explicitly synchronized (most commonly only a 
single updater is allowed to operate)
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Single updater RCU tree:

• Multiple readers

• Single updater

Citrus RCU tree [Arbel PODC’14]:

• Multiple updaters using fine-grain locks.

• Unbalanced tree to enable fine-grain locking



Concurrent HTM-based BSTs

• Hardware Transactional Memory (HTM)
– Avoids STM’s huge overheads

– Allows the modification of multiple locations atomically → good fit for the 
rebalancing phase in a BBST

• HTM-based BSTs:
– Coarse-grained HTM (cg-htm):

• Each operation enclosed in a single transaction

+ Easy to implement

- Large transactions (increased conflict probability)

– Consistency-Oblivious-Programming HTM (cop-htm) [Avni TRANSACT’14]:
• The traversal is performed outside the transaction

• The executed transaction includes 2 steps:

o Validate that the traversal ended at the correct node

o Insert/Delete the node and rebalance if necessary

+ Shorter transactions than cg-htm

- Traversals (and consequently lookup operations) may need to restart
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RCU-HTM

Combines RCU with HTM in an innovative way and 
provides trees with:

1. Asynchronized traversals (thanks to RCU)
– Oblivious of concurrent updates in the tree

– No locks, no transactions or any other synchronization

– No restarts

2. Concurrent updaters (thanks to HTM)
– All updates are performed in copies

– Modified copies are first validated and then installed in the tree

– An HTM transaction is used for the validation+installation phase

• HTM transaction includes several reads but only a single write → 
minimized conflict probability
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RCU-HTM: insert operation
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Steps 3 and 4 performed atomically inside an HTM transaction

If the validation in step 3 fails we abort the transaction and restart the operation

For the non-transactional fallback path we use a lock that allows only a single 

updater.



RCU-HTM: delete operation

• Similar to insert

• One difference:

– When we delete a node with two children we need to copy 
the whole path to its successor
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Experimental Setup

• Intel Broadwell-EP Xeon E5-2699 v4
– 22 cores / 44 hyperthreads @ 2.2GHz

– 64 GB of RAM

• GCC 4.9.2, -O3 optimizations enabled

• Scalable memory allocator (jemalloc)

• No memory reclamation

• All threads pinned to hardware threads (hyperthreads
enabled only at 44-threaded executions)

• Experiments:
– Threads run for 2 seconds, executing randomly chosen operations 

(lookups/inserts/deletes)

– 3 Workloads: 100%, 80% and 20% lookups, and the rest equally divide 
between insertions and deletions

– 3 tree sizes: 2K keys, 20K keys and 2M keys
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Read-only workloads

• No conflict/capacity aborts → all HTM-based trees scale

• RCU-HTM is constantly better due to 2 reasons:

• In small trees the overhead of starting/ending transactions is 

visible in cg-htm and cop-htm.

• In large trees the transaction overhead is hidden but rcu-htm

is faster because of the smaller size of its nodes (e.g., cop-

htm also stores 3 more pointers: parent, prev, succ)



Comparison with HTM-based approaches

Siakavaras et. al               cslab@ntua

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t 
(M

o
p

s/
se

c)

23

0

10

20

30

40

50

60

70

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t 
(M

o
p

s/
se

c)

Number of threads

avl-cg-htm avl-cop-htm avl-rcu-htm

2K keys

20% lookups

2M keys

20% lookups



Comparison with HTM-based approaches

Siakavaras et. al               cslab@ntua

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t 
(M

o
p

s/
se

c)

23

0

10

20

30

40

50

60

70

1 2 4 8 16 22 44

Th
ro

u
gh

p
u

t 
(M

o
p

s/
se

c)

Number of threads

avl-cg-htm avl-cop-htm avl-rcu-htm

2K keys

20% lookups

2M keys

20% lookups

Write-dominated workloads

• In small trees both cg-htm and cop-htm suffer from conflict 

aborts due to their larger transactions (see next slide).

• In large trees cop-htm also manages to avoid conflicts.
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RCU-HTM executes much less transactions and suffers less aborts.
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avl-rcu-mrsw: writers synchronized using a single lock

bst-citrus: unbalanced BST, RCU for readers, fine-grain locks for writers [Arbel PODC’14]
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avl-lb: relaxed balance lock-based AVL tree [Bronson PPOPP’10]

bst-lf: unbalanced lock-free (CAS-based) tree [Natarajan PPoPP’14]
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Conclusions & Future Work

• RCU-HTM combines RCU with HTM and 
provides concurrent BSTs that are:

– Internal

– Strictly balanced

– Efficient both for readers and updaters

• Future work

– Memory reclamation

– Formal proof of correctness (linearizability)

– More BSTs (e.g., B+-trees, Splay trees, etc.) 
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