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Hardware Transactional Memory

* Hardware transactional memory (HTM) is widely
available in commercial hardware.

* HTM guarantees that
* All code executed within the transaction appears as a
single atomic action to other threads.

If HTM transaction aborts, we guarantee that there
will be no semantic side effects.
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ldea: A New HTM Feature

* Always abort HTM (AAHTM): Allow programs to
specify that a HTM transaction should always abort

* Surprisingly, this can be a good idea.
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Hardware Transactional Memory

* Hardware transactional memory (HTM) is widely
available in commercial hardware.

* HTM guarantees that

* All code executed within the transaction appears as a single
atomic action to other threads.

* HTM is implemented by
» Keeping changes private within the local caches
* Leveraging the cache coherence protocol to detect conflicts

* HTM transactions abort due to
* Cache line conflict
* Cache capacity
* lllegal instruction (I/O) or interrupt
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HTM isn’t enough

*On x86, there is no guarantee that an HTM
transaction will succeed
* Repeatedly overflow cache or long enough to get
interrupted

* HTM is usually used in conjunction with a fall-back
lock.

* If you fail enough in HTM, grab the lock
* But how to synchronize between HTM and lock?
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HTM and Fall-back Lock

* HTM transactions shouldn’t see inconsistent state
from the middle of the lock protected critical
section

* Lock protected execution shouldn’t see state from
before and after the transaction

* We need to synchronize between lock protected
and HTM transactions to serialize them

* This is a trap we must consider once we introduce our
contributions
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Early Subscription

* HTM executions subscribe immediately to the lock
on entering a critical section and verify it is unheld

* |If the lock becomes held, the HTM execution aborts

* Problem: a lock acquisition might abort a lot of
HTM executions, even if no true conflict exists.
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Lazy Subscription —an erroneous
optimization

 What if instead we subscribe to the lock at the end
of the HTM execution?

* Use a sequence lock which increments at every lock
acquire/release

* Verify the lock is unheld entering HTM.

* Subscribe to the lock at the end of the HTM
transaction, and verify lock has not changed during

the execution
e If lock hasn’t changed, HTM can commit (NOT!)
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Lazy Subscription Problem

* The problem with lazy subscription is that the HTM
transaction can read inconsistent state (it isn’t
opaque).

* Consequently, the transaction can jump anywhere
in the program

* Fall-back locks and early subscription seem
necessary to guarantee HTM correctness, barring
significant hardware changes.
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HTM has benefits besides parallelism

* Failed transactions have a “prefetching effect”
* Warm up caches and branch predictor

* This effect accelerates subsequent executions of the
critical section

* HTM can act as programmer requested thread-level
speculation
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Goal

* Use HTM to warm-up the hardware while waiting
for any reason.

* Note: we need to avoid the lazy subscription
problem when doing this.
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ldea: A New HTM Feature

* Always abort HTM (AAHTM): Allow programs to
specify that a HTM transaction should always abort

* Surprisingly, this can be a good idea.
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Always-Abort HTM

*|dea
* Use HTM as a programmer requested prefetcher while blocking
* “Always-abort” guarantees no side effects due to lazy
subscription
* Uses

* Integrate always abort HTM (AAHTM) into locks, barriers, and
synchronous communication

* Benefits
* Can outperform both traditional HTM and lock based solutions.
* Use wasted cycles for programmer directed prefetch

* Can distinguish between AAHTM and regular executions to
follow a different code path (e.g. avoid high contention
accesses)

* Simple hardware implementation
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Exploratory Results: Array Bench
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AAHTM Usage

* Works best when
* Large memory footprint -> prefetching has a benefit

 HTM fails often (high contention, large transaction
memory footprint, or illegal instructions)
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Implementation

* API
* AAHTM_BEGIN
* AAHTM _TEST
 XABORT
* XEND (illegal) = XABORT

* Hardware cost
* Minimal on machine with HTM already implemented

* One architectural state bit / hardware thread
* Set by AAHTM_BEGIN, queried by AAHTM _TEST
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Lock Designs

* TAS Lock

* Use AAHTM when lock acquisition fails.
* Arbitrary number of speculating threads -> contention

* Threads that have speculated (warm threads) might not
get the lock -> no prefetching benefit
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Lock Designs

* TAS Priority Lock

 Two additional counters colocated with lock

* Use FAI() to monitor number of speculating, number of
warm threads

 Warm threads have strict priority over cold threads
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Lock Designs

* Ticket Lock

* Threads monitor distance to lock acquisition

 Can tightly control when threads start speculating (e.g.,
when they are 3" in line) and how many.
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Barrier Design

e Use AAHTM if not last thread to arrive

e Last thread to arrive sets flag monitored by all
speculators

* Less contention than with lock because threads are
expected not to synchronize within barrier
protected phases
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input offshore.mtx (75) inline_1.mtx (288) thermal2.mtx (991)

thd # | baseline | aahtm | speedup | baseline | aahtm | speedup | baseline | aahtm | speedup
1 228 2.28| 0.00% 3.18| 3.18| 0.00% 3.83| 3.83| 0.00%
2 3.87( 4.02| 3.88% 6.16| 6.19| 0.49% 3.50f 3.51| 0.29%
4 584 6.75| 15.58% | 11.26(11.40| 1.24% 5921 6.51| 9.97%
8 7.14] 8.01] 12.18% | 19.99|20.53| 2.70% | 10.46| 11.66(11.47%
12 640 7.09| 10.78% | 26.55|27.09| 2.03%| 13.67|14.97| 9.51%
16 527 543 3.04% | 31.60|3342| 5.76% | 14.77| 16.37| 10.83%

Figure: Backward Sparse Triangular Solver using
AAHTM barrier (GB/sec)
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input offshore.mtx (75) inline_1.mtx (288) thermal2.mtx (991)

thd # | baseline | aahtm | speedup | baseline | aahtm | speedup | baseline | aahtm | speedup
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Figure: Backward Sparse Triangular Solver using
AAHTM barrier (GB/sec)

N 7
Av4
23




Future Work

e Other benchmarks

* Other types of waiting (synchronous
communication, hardware accelerators)
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Conclusion

*|dea
* Use HTM as a programmer requested prefetcher while blocking

* “Always-abort” guarantees no side effects due to lazy
subscription

e Uses

* Integrate always abort HTM ( ) into locks, barriers, and
synchronous communication

* Benefits
* Can outperform both traditional HTM and lock based solutions.
* Use wasted cycles for programmer directed prefetch

* Can distinguish between AAHTM and regular executions to
follow a different code path (e.g. avoid high contention
accesses)

* Simple hardware implementation
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