
1

Performance Improvement via
Always-Abort HTM

Joseph Izraelevitz* Lingxiang Xiang† Michael L. Scott*

12th ACM SIGPLAN Workshop on Transactional Computing /
2017 Workshop on the Theory of Transactional Memory

February 5, 2017
Austin, Texas, USA

*Department of Computer Science

University of Rochester

{jhi1,scott}@cs.rochester.edu

† Parallel Computing Lab,

Intel Corporation

lingxiang.xiang@intel.com

2

Hardware Transactional Memory

•Hardware transactional memory (HTM) is widely
available in commercial hardware.

•HTM guarantees that
• All code executed within the transaction appears as a

single atomic action to other threads.

• If HTM transaction aborts, we guarantee that there
will be no semantic side effects.

3

Idea: A New HTM Feature

•Always abort HTM (AAHTM): Allow programs to
specify that a HTM transaction should always abort

•Surprisingly, this can be a good idea.

4

Hardware Transactional Memory

•Hardware transactional memory (HTM) is widely
available in commercial hardware.
•HTM guarantees that

• All code executed within the transaction appears as a single
atomic action to other threads.

•HTM is implemented by
• Keeping changes private within the local caches
• Leveraging the cache coherence protocol to detect conflicts

•HTM transactions abort due to
• Cache line conflict
• Cache capacity
• Illegal instruction (I/O) or interrupt

5

HTM isn’t enough

•On x86, there is no guarantee that an HTM
transaction will succeed
• Repeatedly overflow cache or long enough to get

interrupted

•HTM is usually used in conjunction with a fall-back
lock.
• If you fail enough in HTM, grab the lock

•But how to synchronize between HTM and lock?

6

HTM and Fall-back Lock

•HTM transactions shouldn’t see inconsistent state
from the middle of the lock protected critical
section
• Lock protected execution shouldn’t see state from

before and after the transaction

•We need to synchronize between lock protected
and HTM transactions to serialize them
• This is a trap we must consider once we introduce our

contributions

7

Early Subscription

•HTM executions subscribe immediately to the lock
on entering a critical section and verify it is unheld

• If the lock becomes held, the HTM execution aborts

•Problem: a lock acquisition might abort a lot of
HTM executions, even if no true conflict exists.

8

Lazy Subscription – an erroneous
optimization

•What if instead we subscribe to the lock at the end
of the HTM execution?

•Use a sequence lock which increments at every lock
acquire/release

•Verify the lock is unheld before entering HTM.

•Subscribe to the lock at the end of the HTM
transaction, and verify lock has not changed during
the execution

• If lock hasn’t changed, HTM can commit (NOT!)

9

Lazy Subscription Problem

•The problem with lazy subscription is that the HTM
transaction can read inconsistent state (it isn’t
opaque).

•Consequently, the transaction can jump anywhere
in the program including to a COMMIT instruction.

•Fall-back locks and early subscription seem
necessary to guarantee HTM correctness, barring
significant hardware changes.

10

HTM has benefits besides parallelism

•Failed transactions have a “prefetching effect”
• Warm up caches and branch predictor

•This effect accelerates subsequent executions of the
critical section

•HTM can act as programmer requested thread-level
speculation

11

Goal

•Use HTM to warm-up the hardware while waiting
for any reason.

•Note: we need to avoid the lazy subscription
problem when doing this.

12

Idea: A New HTM Feature

•Always abort HTM (AAHTM): Allow programs to
specify that a HTM transaction should always abort

•Surprisingly, this can be a good idea.

13

Always-Abort HTM

• Idea
• Use HTM as a programmer requested prefetcher while blocking
• “Always-abort” guarantees no side effects due to lazy

subscription

•Uses
• Integrate always abort HTM (AAHTM) into locks, barriers, and

synchronous communication

• Benefits
• Can outperform both traditional HTM and lock based solutions.
• Use wasted cycles for programmer directed prefetch
• Can distinguish between AAHTM and regular executions to

follow a different code path (e.g. avoid high contention
accesses)

• Simple hardware implementation

14

threads threads

O
p
s
/s

O
p
s
/s

write to 10 random
locations / txn

write A[0], plus
100 random locations / txn

Exploratory Results: Array Bench

15

AAHTM Usage

•Works best when
• Large memory footprint -> prefetching has a benefit
• HTM fails often (high contention, large transaction

memory footprint, or illegal instructions)

16

Implementation

•API
• AAHTM_BEGIN
• AAHTM_TEST
• XABORT

• XEND (illegal) = XABORT

•Hardware cost
• Minimal on machine with HTM already implemented
• One architectural state bit / hardware thread
• Set by AAHTM_BEGIN, queried by AAHTM_TEST

17

Lock Designs

•TAS Lock
• Use AAHTM when lock acquisition fails.
• Arbitrary number of speculating threads -> contention
• Threads that have speculated (warm threads) might not

get the lock -> no prefetching benefit

18

Lock Designs

•TAS Priority Lock
• Two additional counters colocated with lock
• Use FAI() to monitor number of speculating, number of

warm threads
• Warm threads have strict priority over cold threads

19

Lock Designs

•Ticket Lock
• Threads monitor distance to lock acquisition
• Can tightly control when threads start speculating (e.g.,

when they are 3rd in line) and how many.

Single lock protecting std::map (red-black tree)

21

Barrier Design

•Use AAHTM if not last thread to arrive

• Last thread to arrive sets flag monitored by all
speculators

• Less contention than with lock because threads are
expected not to synchronize within barrier
protected phases

22

Figure: Backward Sparse Triangular Solver using
AAHTM barrier (GB/sec)

23

Figure: Backward Sparse Triangular Solver using
AAHTM barrier (GB/sec)

24

Future Work

•Other benchmarks

•Other types of waiting (synchronous
communication, hardware accelerators)

25

Conclusion

• Idea
• Use HTM as a programmer requested prefetcher while blocking
• “Always-abort” guarantees no side effects due to lazy

subscription

•Uses
• Integrate always abort HTM (AAHTM) into locks, barriers, and

synchronous communication

• Benefits
• Can outperform both traditional HTM and lock based solutions.
• Use wasted cycles for programmer directed prefetch
• Can distinguish between AAHTM and regular executions to

follow a different code path (e.g. avoid high contention
accesses)

• Simple hardware implementation

