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Goals	  

•  Improve	  our	  ability	  to:	  
1.  understand,	  and	  
2.  predict	  
performance	  of	  HTM	  implementa8ons	  
– both	  current	  and	  future	  ones	  

•  Current	  work	  focuses	  on	  TSX	  
– Work	  in	  progress	  on	  IBM’s	  POWER8	  	  



Approach	  

•  White-‐box	  analy8cal	  model	  of	  HTM	  performance:	  
–  focus	  on	  performance	  dynamics	  due	  to:	  

•  capacity	  limita8ons	  
•  conflicts	  between	  transac8ons	  
•  impact	  of	  fallback	  path	  acquisi8on	  (global	  lock)	  

•  Previous	  works	  focused	  on	  black-‐box	  models:	  
–  poor/no	  human	  interpretability	  

•  do	  not	  really	  contribute	  to	  deepen	  our	  understanding	  
–  limited	  extrapola8on	  power	  

•  e.g.,	  what	  if:	  capacity	  doubled?	  CPU	  had	  1000	  cores?	  



Challenges	  (1/2)	  

•  White-‐box	  models	  require	  knowledge	  on	  
internals	  of	  target	  system:	  
–  internal	  implementa8on	  of	  TSX	  is	  undisclosed	  
– some	  preliminary	  studies	  do	  exist	  and	  help	  
[PACT14,	  IPDPS14,	  MIT15]	  

– but	  some	  relevant	  details	  are	  s8ll	  unclear:	  
•  effec8ve	  capacity	  for	  transac8ons	  that	  issue	  different	  
mixes	  of	  loads/stores	  	  
•  resolu8on	  policy	  for	  transac8onal	  conflicts	  



Challenges	  (2/2)	  

•  Tame	  the	  complexity	  of	  HTM	  implementa8ons	  
•  Models	  are	  an	  inherent	  approxima8on	  of	  
reality	  

•  The	  art	  of	  white-‐box	  performance	  modelling:	  
– pick	  the	  “right”	  approxima8ons	  
– make	  the	  model	  simple	  enough	  to	  be:	  

1.  treatable	  and	  computable	  efficiently	  
2.  accurate	  enough	  to	  be	  useful	  in	  prac8ce	  
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Related	  work	  

•  Ample	  literature	  on	  modeling	  of	  DBMS’s	  
concurrency	  control	  performance:	  
–  both	  white-‐	  and	  black-‐box	  approaches	  
–  relevant	  differences:	  

•  no	  capacity	  limita8ons	  
•  no	  fallback	  path	  

•  Several	  white-‐box	  models	  targeted	  STM,	  but:	  
–  different	  concurrency	  control	  scheme	  
–  no	  capacity	  limita8ons	  
–  no	  fallback	  path	  
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What	  we	  know	  about	  TSX	  

Concurrency	  control	  
•  conflicts	  are	  eagerly	  

detected	  
–  non-‐transac8onal	  opera8ons	  

cause	  immediate	  abort	  of	  
conflict	  transac8ons:	  

–  e.g.,	  fallback	  path	  

Capacity	  
•  stores	  maintained	  in	  L1	  

–  transac8ons	  that	  only	  issue	  
sequen8al	  stores	  can	  achieve	  
~90%	  of	  max	  L1	  capacity	  

•  loads	  are	  not	  
–  transac8ons	  that	  only	  issue	  

sequen8al	  load	  achieve	  ~50%	  
of	  L3	  capacity	  
•  way	  more	  than	  L1	  &	  L2’s	  capacity	  

	  



What	  we’d	  like	  to	  know	  about	  TSX	  

Concurrency	  control	  
•  conflicts	  are	  eagerly	  

detected	  
–  non-‐transac8onal	  opera8ons	  

cause	  immediate	  abort	  of	  
conflict	  transac8ons:	  

–  e.g.,	  fallback	  path	  
•  Upon	  a	  conflict	  between	  

two	  or	  more	  transac8ons:	  
–  which	  one	  is	  aborted?	  

Capacity	  
•  stores	  maintained	  in	  L1	  

–  transac8ons	  that	  only	  issue	  
sequen8al	  stores	  can	  achieve	  
~90%	  of	  max	  L1	  capacity	  

–  L1	  is	  private,	  so:	  
•  why	  not	  its	  whole	  capacity?	  

•  loads	  are	  not	  
–  transac8ons	  that	  only	  issue	  

sequen8al	  load	  achieve	  ~50%	  
of	  L3	  capacity	  
•  way	  more	  than	  L1	  &	  L2’s	  capacity	  
•  why	  not	  whole	  L3	  capacity?	  

–  what	  if	  transac8ons	  execute	  mixes	  
of	  loads	  and	  stores?	  

	  



Conflict	  resolu8on	  policy	  in	  TSX	  

•  Simple	  experiment:	  
–  run	  two	  concurrently	  
–  inject	  properly	  tuned	  delays	  to	  cause:	  
•  read	  aper	  write	  
•  write	  aper	  write	  conflicts	  
•  write	  aper	  write	  

•  Conclusion:	  
– “Last	  requester	  wins”	  policy	  
– Spoiler:	  not	  the	  same	  for	  POWER8!	  



What	  we’d	  like	  to	  know	  about	  TSX	  

Concurrency	  control	  
•  conflicts	  are	  eagerly	  

detected	  
–  non-‐transac8onal	  opera8ons	  

cause	  immediate	  abort	  of	  
conflict	  transac8ons:	  

–  e.g.,	  fallback	  path	  
•  Upon	  a	  conflict	  between	  

two	  or	  more	  transac8ons:	  
–  which	  one	  is	  aborted?	  

•  “Last	  requester	  wins”	  

Capacity	  
•  stores	  maintained	  in	  L1	  

–  transac8ons	  that	  only	  issue	  
sequen8al	  stores	  can	  achieve	  
~90%	  of	  max	  L1	  capacity	  

–  L1	  is	  private,	  so:	  
•  why	  not	  its	  whole	  capacity?	  

•  loads	  are	  not	  
–  transac8ons	  that	  only	  issue	  

sequen8al	  load	  achieve	  ~50%	  
of	  L3	  capacity	  
•  way	  more	  than	  L1	  &	  L2’s	  capacity	  
•  why	  not	  whole	  L3	  capacity?	  

–  what	  if	  transac8ons	  execute	  mixes	  
of	  loads	  and	  stores?	  

	  



Actual	  store	  capacity	  

•  Nguyen	  [MIT15]	  hypothesized	  the	  presence	  of	  some	  
transac8onal	  metadata	  in	  L1:	  
–  how	  large	  is	  this	  metadata?	  10%	  of	  the	  L1	  cache?	  

•  We	  seek	  an	  answer	  by:	  
–  simula8ng	  an	  L1	  with	  the	  same	  geometry	  as	  our	  plaqorm:	  

•  512	  cache	  lines,	  8-‐way	  associa8vity	  (Haswell	  Xeon	  V3,	  4	  cores)	  
–  placing	  metadata	  in	  X	  random	  cache	  lines	  
–  emula8ng	  a	  tx	  that	  issues	  sequen8al	  stores	  star8ng	  from	  a	  
random	  address	  

–  repor8ng	  a	  capacity	  if	  we	  evict	  a	  metadata	  or	  a	  cache	  line	  
wriren	  by	  the	  transac8on	  



Actual	  store	  capacity	  

•  Nguyen	  [MIT15]	  hypothesized	  the	  presence	  of	  some	  
transac8onal	  metadata	  in	  L1:	  
–  how	  large	  is	  this	  metadata?	  10%	  of	  the	  L1	  cache?	  

è	  ~3	  lines	  are	  occupied	  by	  transac8onal	  meta-‐data	  
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What	  we’d	  like	  to	  know	  about	  TSX	  

Concurrency	  control	  
•  conflicts	  are	  eagerly	  

detected	  
–  non-‐transac8onal	  opera8ons	  

cause	  immediate	  abort	  of	  
conflict	  transac8ons:	  

–  e.g.,	  fallback	  path	  
•  Upon	  a	  conflict	  between	  

two	  or	  more	  transac8ons:	  
–  which	  one	  is	  aborted?	  

•  “Last	  requester	  wins”	  

Capacity	  
•  stores	  maintained	  in	  L1	  

–  transac8ons	  that	  only	  issue	  
sequen8al	  stores	  can	  achieve	  
~90%	  of	  max	  L1	  capacity	  

–  Why	  not	  its	  whole	  capacity?	  
•  Transac8onal	  metadata	  

•  loads	  are	  not	  
–  transac8ons	  that	  only	  issue	  

sequen8al	  load	  achieve	  ~50%	  
of	  L3	  capacity	  
•  way	  more	  than	  L1	  &	  L2’s	  capacity	  
•  why	  not	  whole	  L3	  capacity?	  

–  what	  if	  transac8ons	  execute	  mixes	  
of	  loads	  and	  stores?	  

	  



Capacity	  with	  load/store	  mixes	  

•  Experiment:	  
–  Tx	  accesses	  (cache	  aligned)	  addresses	  selected	  unif.	  at	  rand.	  
–  each	  access	  is	  a	  store	  (resp.	  load)	  with	  prob.	  PW	  (resp.	  1-‐PW)	  
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Capacity	  with	  load/store	  mixes	  

•  Key	  observa8on:	  
–  when	  50%	  of	  accesses	  are	  loads,	  capacity	  does	  not	  double	  

•  only	  ~10%	  increase	  on	  average	  
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Capacity	  with	  load/store	  mixes	  

•  Key	  observa8on:	  
–  when	  50%	  of	  accesses	  are	  loads,	  capacity	  does	  not	  double	  

•  only	  ~10%	  increase	  on	  average	  
	  

•  Hypothesis:	  
1.  loads	  can	  trigger	  evic8ons	  in	  L1:	  

•  L1	  evic8on	  of	  wriren	  cache	  lines:	  
è	  capacity	  abort	  

•  L1	  evic8on	  of	  read	  cache	  lines:	  
è	  safe,	  metadata	  stored	  elsewhere	  

2.  for	  non-‐minimal	  values	  of	  PW	  the	  effec8ve	  capacity	  is	  largely	  	  
determined	  	  by	  evic8ons	  in	  L1:	  
•  intui8on:	  L3	  is	  256x	  larger	  than	  L1	  

	  



Capacity	  with	  load/store	  mixes	  
•  We	  use,	  again,	  simula8on	  to	  validate	  our	  hypothesis	  &	  

approxima8on.	  
	  
	  
•  They	  hold	  for	  write	  prob.	  

as	  small	  as	  0.1%!	  
	  
	  

•  Consequences:	  
–  for	  modelling	  purposes	  we	  do	  not	  care	  where/how	  TSX	  stores	  
metadata	  of	  loaded	  cache	  lines	  

–  models	  considering	  only	  L1	  will	  have	  good	  accuracy	  
	  

 0

 20

 40

 60

 80

 100

 64  128  256  512  1024  2048  4096

Pr
ob

ab
ilit

y 
of

 c
ap

ac
ity

 a
bo

rt 
(%

)

Number of cache lines

HAR PW = 100%
SIM PW = 100%
HAR PW = 50%
SIM PW = 50%

HAR PW = 10%
SIM PW = 10%
HAR PW = 1%
SIM PW = 1%

HAR PW = 0.1%
SIM PW = 0.1%



What	  we’d	  like	  to	  know	  about	  TSX	  

Concurrency	  control	  
•  conflicts	  are	  eagerly	  

detected	  
–  non-‐transac8onal	  opera8ons	  

cause	  immediate	  abort	  of	  
conflict	  transac8ons:	  

–  e.g.,	  fallback	  path	  
•  Upon	  a	  conflict	  between	  

two	  or	  more	  transac8ons:	  
–  which	  one	  is	  aborted?	  

•  “Last	  requester	  wins”	  

Capacity	  
•  stores	  maintained	  in	  L1	  

–  transac8ons	  that	  only	  issue	  
sequen8al	  stores	  can	  achieve	  
~90%	  of	  max	  L1	  capacity	  

–  Why	  not	  its	  whole	  capacity?	  
•  Transac8onal	  metadata	  

•  loads	  are	  not	  
–  transac8ons	  that	  only	  issue	  

sequen8al	  load	  achieve	  ~50%	  of	  
L3	  capacity	  
•  way	  more	  than	  L1	  &	  L2’s	  capacity	  
•  why	  not	  whole	  L3	  capacity?	  

–  transac8ons	  execu8ng	  mixes	  of	  loads	  
and	  stores	  are	  constrained	  by	  L1	  

	  

need	  
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Key	  parameters	  and	  assump8ons	  

•  θ	  threads	  running	  concurrently	  on	  different	  physical	  cores:	  
–  no	  Hyper-‐threading	  

•  Aper	  B	  aborts,	  the	  fallback	  path	  (global	  lock)	  is	  ac8vated	  

•  Key	  workload	  characteris8cs:	  
–  Interleaving	  of	  transac8onal/non-‐transac8onal	  code	  
–  Transac8on	  length	  (#	  accesses)	  and	  dura8on	  
–  Transac8on	  data	  access	  parerns	  

•  Target	  KPIs:	  
–  avg.	  throughput/execu8on	  8me	  (including	  aborted	  retries)	  
–  abort	  probability:	  conten8on,	  fallbacks,	  capacity	  



Key	  parameters	  and	  assump8ons:	  
Tx/non-‐tx	  code	  blocks	  

•  Threads	  execute	  either	  transac8onal	  or	  non-‐
transac8onal	  code	  block	  with	  probability	  Pt	  

•  Data	  race	  freedom:	  	  
– Transac8onal	  and	  non-‐transac8onal	  code	  access	  
disjoint	  data	  

– 1	  notable	  excep8on:	  the	  fallback	  lock	  

Workload assumptions

A thread may start:
Non-Transactional Code Blocks (NTCBs);

With probability 1 ≠ pt

Transactions Code Blocks (TCBs);
With probability pt

Non-transactions do not conflict with transactions;

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 15 / 32



Workload assumptions
Transaction length:

TCBs access a number of granules L and have a duration C :
Assume L known and fixed;

Assume C a known average value, exponentially distributed;

Each W = C/L time interval transactions access a granule;

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 16 / 32

Key	  parameters	  and	  assump8ons:	  
Transac8on	  length	  and	  dura8on	  

•  Transac8ons	  perform,	  on	  average,	  L	  accesses,	  each	  mapping	  
to	  a	  different	  cache	  line	  
–  if	  mul8ple	  accesses	  map	  to	  the	  same	  cache	  line,	  only	  the	  first	  is	  

accounted	  for	  

•  Dura8on	  of	  transac8ons	  is	  exponen8ally	  distributed	  with	  
mean	  value	  C	  
–  C/L:	  avg.	  8me	  between	  two	  memory	  accesses	  
–  1/C	  <<	  hardware	  8mer	  interrupt	  frequency	  



Transac8on	  data	  access	  parerns	  

•  Tx	  accesses	  are	  uniformly	  distributed	  across	  D	  
granules:	  
– each	  granule	  has	  the	  size	  of	  a	  cache	  line	  
– non-‐uniform	  access	  parerns	  can	  be	  approximated	  
via	  an	  “equivalent”	  (smaller)	  uniform	  one	  [TAS14]	  

•  Each	  access	  is	  a	  store,	  	  
resp.	  load,	  with	  probability	  	  
PW,	  resp.	  1-‐PW	  

Workload assumptions

Access to shared resources

Assume transactions access a granule
pool of size of fixed size D;

Accesses are uniformly distributed,
every granule is equiprobable;

Larger D results in smaller contention:
D æ Œ then there is no contention

Related work on modeling non-uniform
accesses [Didona, 2014]
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Modelling	  execu8on	  of	  threads	  (1/3)	  

•  At	  any	  point	  in	  8me,	  the	  state	  of	  the	  system	  can	  be	  
described	  as	  follows:	  
–  txi:	  #threads	  running	  transac8ons	  with	  i	  	  	  	  [1,B]	  retries	  lep	  
–  nt:	  #threads	  execu8ng	  non-‐transac8onal	  code	  
– ':	  #threads	  in	  the	  fallback	  path	  
where	  Σi=1..B	  txi	  +	  nt	  +	  z	  =	  θ	  	  	  //	  tot	  thread	  count	  

•  We	  encode	  the	  system’s	  state	  via	  tuples	  of	  the	  	  form:	  
	  <txB,	  …	  ,txi	  ,…	  ,tx1	  ,nt	  ,	  '>	  

•  Each	  state:	  
–  has	  a	  different	  abort	  probability	  
–  produces	  a	  different	  throughput	  

∈



Modelling	  execu8on	  of	  threads	  (2/3)	  

•  …and	  model	  execu8on	  via	  a	  Markov	  Chain:	  

•  whose	  transi8on	  rates	  depend	  on	  source	  states’:	  
•  throughput	  	  
•  abort	  probability	  
•  fallback	  path	  ac8va8on	  probability	  



Modelling	  execu8on	  of	  threads	  (3/3)	  

•  The	  use	  of	  a	  Markov	  Chain	  (MC)	  allows	  for	  
simplifying	  modelling:	  
–  target	  KPIS	  can	  be	  computed	  on	  a	  state-‐by-‐state	  basis:	  

•  thus	  focusing	  on	  a	  simpler	  case	  	  

–  next,	  the	  sta8onary	  distribu8on,	  	  	  	  	  ,	  of	  the	  MC	  can	  be	  
computed:	  	  
•  probability	  to	  be	  in	  each	  state	  of	  the	  MC	  

–  finally,	  the	  KPIs	  for	  the	  whole	  system	  are	  obtained	  as	  
the	  average	  of	  the	  KPIs	  in	  each	  state	  weighted	  by	  the	  
probability	  of	  each	  state,	  e.g.:	  

Modeling the system

Stationary distribution of this Markov-chain, fįs :
probability of being in each state;

Probability of abort and throughput are computed as the weighted
average for all states;

Probability of abort: pa =
q

sœS fįspa,s

States with Ø 1 fall-back transactions: pa,s = 1;
Normalize pa to not include these states;

Throughput: X =
q

sœS fįsXs

States with Ø 1 fall-back transactions: Xs = µf
Other states: Xs = ◊tµt
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Modelling	  transac8on	  conflicts	  

•  Avg.	  frequency	  of	  conflicts	  for	  a	  tx	  at	  its	  i-‐th	  
opera8on:	  

	  
•  Probability	  of	  reaching	  opera8on	  i,	  PR(i),	  is	  
computed	  recursively:	  

Every	  W=C/L	  8me	  units,	  
the	  remaining	  θt-‐1	  

transac8onal	  threads	  
access	  an	  item	  

This	  access	  must	  target	  
one	  of	  the	  i	  items	  

already	  accessed	  by	  the	  
transac8on	  

To	  generate	  a	  conflict,	  	  at	  
least	  one	  of	  the	  two	  

accesses	  must	  be	  a	  write	  

H (i) = (θ
t −1)
W

i
D
(1− (1−PW )

2

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t ) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC ) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC )

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.
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Modelling	  aborts	  due	  to	  fallbacks	  

•  When	  a	  transac8ons	  with	  1	  retry	  lep	  aborts	  
due	  to	  a	  conflict,	  it	  will	  cause	  the	  abort	  of	  any	  
other	  concurrent	  transac8on	  

•  We	  model	  this	  by:	  
– first	  compu8ng	  abort	  probability	  w/o	  fallbacks	  
– correc8ng	  the	  frequency	  of	  conflicts:	  

– compu8ng	  again	  the	  abort	  probability	  

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t ) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC ) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC )

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.
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its i-th granule can, then, be computed recursively:
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We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
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We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
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We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:
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The adjusted µ0
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4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.
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Modelling	  Capacity	  Aborts	  
Write-‐only	  workloads	  (PW=1)	  

•  Modelled	  as	  a	  ball	  into	  bins	  problem:	  
–  C-‐associa8ve	  cache	  with	  B	  sets	  	  è	  	  B	  bins,	  each	  with	  capacity	  C	  

•  Compute	  probability	  that	  at	  least	  a	  bin	  is	  full	  aper	  i	  balls.	  	  
•  Different	  sequences	  of	  I	  ball	  throws	  w/o	  causing	  any	  bin	  

overflows	  (up	  to	  C	  ball	  in	  each	  bin):	  

Capacity exceptions

Cache can be seen has a set of bins with a given capacity:
B bins;
Each bin has capacity C ;

Reduce the problem of computing probability of capacity exception in
TSX after i accesses to the problem of computing probability that at
least one bin is full after launching i balls.

Number of states reachable after throwing i balls such that no bin
exceeds its capacities, i.e., valid states:

NB,C,I =
maxcÿ

x=minc

3
B
x

4 x-1Ÿ

y=0

3
I-yC
C

4
◊ NB-x,C-1,I-xC

maxc is the maximum full bins, i.e.,
% I

C
&
;

minc is the minimum full bins, i.e., max(0, B ◊ (C ≠ 1));
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max(0,	  I-‐	  B(C-‐1)),	  
distribute	  balls	  to	  
bins	  in	  round-‐robin	  

	  	  	  	  	  	  all	  balls	  hit	  the	  same	  
bin,	  un8l	  this	  is	  full	  

I
C
!

"!
#

$#

no.	  ways	  in	  which	  	  
we	  can	  choose	  x	  
bins	  out	  of	  B	  

no.	  ways	  in	  which	  we	  can	  
throw	  Cx	  balls	  filling	  x	  bins	  

we	  are	  lep	  with:	  
-‐	  I-‐xC	  balls	  
-‐	  B-‐x	  bins,	  not	  filled	  



Modelling	  Capacity	  Aborts	  
Write-‐only	  workloads	  (PW=1)	  

•  Cast	  to	  a	  ball	  into	  bins	  problems:	  
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overflows	  (up	  to	  C	  ball	  in	  each	  bin):	  

•  Probability	  that	  at	  least	  one	  bin	  overflows	  aper	  I	  balls	  :	  

Capacity exceptions

Cache can be seen has a set of bins with a given capacity:
B bins;
Each bin has capacity C ;

Reduce the problem of computing probability of capacity exception in
TSX after i accesses to the problem of computing probability that at
least one bin is full after launching i balls.

Number of states reachable after throwing i balls such that no bin
exceeds its capacities, i.e., valid states:

NB,C,I =
maxcÿ

x=minc
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B
x

4 x-1Ÿ
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3
I-yC
C

4
◊ NB-x,C-1,I-xC

maxc is the maximum full bins, i.e.,
% I
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minc is the minimum full bins, i.e., max(0, B ◊ (C ≠ 1));
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The throughput of the system is defined as the the rate at which
any thread in the system completes a code block (NTCB or TCB).
It is computed as the weighted average of the system being in a
state si times the throughput in si. On its turn, the throughput in si
is the sum of the rates corresponding to the completion of a NTCB
or the commit of a TCB. We refer to the values of µ0

t computed in
state s as µ0

t,s.

X =
X

s(ti,ft=0,nt)2S

~⇡s(ti µ
0
t,s+nt µn)+

X

s(ti,ft�1,nt)2S

~⇡s(nt µn+µf )

(9)

We note that in a state s in which there is at least one transaction
in the fall-back path, this equation captures the fact that there is
only one transaction contributing to the throughput, by committing
with a rate µf =

1
C

. In a state s in which ft = 0, instead, the
ti hardware transactions all contribute to the throughput of the
system, with a rate tiµt,s.

To obtain the response time of a transaction, we exploit Little’s
law [28]. We first express X as the product of the number of active
threads ✓ and the inverse of the average response time of a code
block, whether transactional or not, R⇤. Once we obtain R⇤ we
note that it corresponds to a weighted average of the response
time of a transactional code block R⇤

t and of a non-transactional
code block R⇤

n. Because the system is stable, the probability that a
successfully executed code block is (non) transactional corresponds
to the probability that a (non) transactional code block is started.
Hence, R⇤

= ptR
⇤
t + (1 � pt)R

⇤
n. Because R⇤

n is equal to Cn

and it is given as input to the model, we can solve the equation and
obtain R⇤

t .
The average abort probability PA is computed as the weighted

average of the abort probability values obtained in each state s,
noted p0a,s. Because a transaction cannot abort when running in the
fall-back path, we do not consider the states in which ft > 0:
PA =

P
s(i,f=0,n)2S ~⇡sp

0
a,s.

4.4 Modelling capacity aborts
In this section we discuss how the model presented so far can be
extended, in a modular way, with an additional model aimed solely
at predicting the probability, noted PC(i), that a transaction incurs
a capacity abort when it issues its i-th operation.

The integration of these two models is indeed straightforward
as it suffices to observe that the the probability to reach operation
i when both aborts due to conflicts and capacity exceptions are
possible, noted P 00

R(i), can be expressed as:

P 00
R(i) = PR(i)(1� PC(i)) (10)

Let us now discuss how to derive PC(i). In the light of the
findings reported in Section 3.2, our model assumes that a capacity
abort can only be triggered by the eviction from the of a cache
line that was written by a transaction. To compute the probability
that a transactions experiences a capacity abort at its i-th access
we compute the probability that two events jointly happen: i) the
corresponding granule is stored in a full set of the L1 cache, and ii)
the cache line selected for eviction corresponds to a written granule.

We cast the problem of finding this probability to a variation of
the balls-into-bins problem. In our settings, a ball is an accessed
granule, the bins (B) are the sets of the cache, and the capacity of
each bin (C) is the associativity of the cache.

Each memory access performed by a transaction is a ball thrown
at a bin chosen uniformly at random. The variation with respect
to the classic bin-into-balls-problem is two-fold: i) a ball can be
a write ball (with probabilityPW ) or a read ball (with probability
1 � PW ); ii) if a bin is full, a read ball can be removed from it (if
selected by the eviction policy) to make room for another ball.

Let us start by considering the simpler case in which only write
accesses are performed, i.e., only write balls exist. We define a
valid sequence of length I , a sequence of I ball throws such that
no bin overflows, i.e., no bin receives more than C balls. The total
number of possible sequences of length I with B bins is BI . These
sequences also include invalid ones, i.e., sequences in which bins
can have been assigned more than C balls. We note NB,C,I the
number of valid sequences after I balls have been thrown. Then,
the probability that at least one bin experiences an overflow after
throwing I balls, noted P (c  I) is:

P (c  I) = 1� NB,C,I

BI
(11)

We compute NB,C,I in the following way. Assume that exactly
x bins have been filled after I balls are thrown. The number of
combinations of balls-to-bins allocations is given by the product of
i) the number of ways in which the x bins can be filled with xC
balls and ii) the number, ⌫, of ways in which the the remaining
I � xC balls can be assigned to the remaining B � x bins without
fully filling them. It follows that ⌫ can be computed as NB-x,C-1,I-xC,
i.e., the number of ways in which the remaining I � xC balls can
be thrown in B � x bins in such a way that, at most, every bin is
filled with C � 1 balls.

The minimum value for x is the number of bins that are filled
if balls are assigned to bins in a round-robin fashion: minc =

max(0, I � B(C � 1)). The maximum value for x is the number
of bins that get filled if the balls are thrown to the same bin until it
gets full: maxc = bI/Bc. These x bins can be chosen out of the
total B possible in

�
B
x

�
ways. Finally, the number of ways in which

Cx balls can be thrown in x bins in such a way that all the x bins
are filled is

Qx-1
y=0

�I-yC
C

�
. The resulting equation for NB,C,I is then

NB,C,I =

maxcX

x=minc

NB-x,C-1,I-xC

 
B

x

!
x-1Y

y=0

 
I-yC
C

!
(12)

We now describe how we extend this model to take into account
that the capacity abort probability also varies with the probability
of write, PW . In this case, the number of valid sequences of a
given length I is larger than for the case of PW = 1, since if a
full bin contains at least a read ball b, it can still accommodate
an additional (read/write) ball, provided that b is selected by the
eviction policy. Given the combinatorial nature of the problem,
the number of scenarios to be accounted for in order to derive an
exact probabilistic solution increases dramatically for the case of
PW 6= 1, along with the complexity and computational cost of the
resulting model.

We propose therefore an approximate solution technique that is
based on the following approach. Let us introduce the notations: i)
P (c  IPW

), to refer to the probability of having a capacity abort
upon during any of the first I accesses of a transaction that executes
writes with probability PW ; ii) P (c = IPW ^ ¬c < (I � 1)

PW
),

to refer to the probability of having a capacity abort exactly at
the I-th access and of not incurring capacity aborts during the
previous I-1 operations, where each of the I operations is a write
with probability PW .

We start by expressing P (c = IPW ^ ¬c < (I � 1)

PW
) as:

P (c = IPW |¬c < I � 1

PW
)P (¬c < (I � 1)

PW
) (13)

Next we observe that the probability of having a capacity ex-
ception at operation I is not affected by whether this operation is a
read or write , but only by whether the corresponding ball I hits a
full bin and causes the “eviction” of a write ball. Hence:

P (c = IPW |¬c < (I � 1)

PW
) = P (c = I|¬c < (I � 1)

PW
)
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Modelling	  Capacity	  Aborts	  
Mixed	  read/write	  workloads	  

•  As	  already	  discussed,	  models	  can	  focus	  only	  
on	  L1	  dynamics	  for	  Pw	  >	  0.1%	  

•  But	  the	  exact	  computa8on	  is	  more	  complex	  
with	  read/write	  “balls”:	  
– both	  mathema8cally	  and	  computa8onally	  
– we	  propose	  an	  approximate	  approach	  
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Valida8on	  

•  Based	  on	  Xeon	  E3-‐1275	  v3	  running	  at	  3.5GhZ	  
(Haswell),	  4	  physical	  cores	  

•  Capacity:	  
– conflict	  free	  workload,	  single	  threaded	  

•  Conflicts:	  
– short	  transac8ons,	  not	  to	  cause	  capacity	  except.	  

•  In	  both	  tests	  we	  generate	  uniformly	  
distributed	  accesses	  over	  data	  sets	  of	  size	  D	  	  
	  



Probability	  of	  Capacity	  Aborts	  

Next, we introduce the following approximation:

P (c = I|¬c < (I � 1)

PW
) ⇡ P (c = I|¬c < (I � 1))PW

namely, we approximate the conditioned probability of having a
capacity after I read/write accesses with the conditioned probability
of having a capacity after I write accesses scaled down by a factor
PW . The latter scaling factor reflects the fact that P (c = I|¬c <
I � 1) is computed assuming that all the full bins after I-1 balls
contain exclusively write balls. Conversely, if transactions issue
write operations with probability PW , on average the full bins after
I � 1 throws will contain only a fraction of write ball equal to
PWC over a total of C balls. This is only an approximation as
the expected number of full bins after I balls when PW < 1 is
smaller than if PW = 1. In fact, if writes are rare (small PW ),
one can throw in a single bin a number of balls that largely exceed
the bin’s capacity; when PW = 1, conversely the min number of
full bins is strictly bounded by max(0, I �B(C � 1)) . As we will
show in Section 5, this approximation yields good accuracy for PW

values larger than 1%, which, as discussed in Section 3.2, is also a
necessary condition for modelling accurately the cache dynamics
by modelling solely the L1 dynamics.

P (c = I|¬c < I � 1) can be computed by expressing it
as (P (c  I) � P (c  I � 1))/(1 � P (c < I � 1)) and
exploiting Eq. 11, using the definition of conditioned probability.
P (¬c < (I � 1)

PW
), in Eq. 13, can be expressed as:

P (¬c < (I�1)

PW
) = 1�

I�1X

J=1

P (c = JPW ^¬c < (J �1)

PW
)

and can be computed recursively setting

P (c = 1

PW ^ ¬c < 0

PW
) = 1

.
Finally, P (c  IPW

) can simply be expressed as the sum of the
probabilities of having a capacity abort exactly at operation J , and
not earlier, for all J < I :

P (c  IPW
) =

IX

J=0

P (c = JPW ^ ¬c < (J � 1)

PW
)

5. Validation
This section reports the results of a validation study that compares
the KPIs predicted by the model presented in the previous sections
with those achieved when executing on our target experimental
platform (see Section 3).

We start by validating the accuracy of our model of capacity
aborts, since it is a building block on which the overall perfor-
mance model is built. To this end we run several experiments in
which transactions perform N distinct memory accesses with a
write probability 0.01  PW  1. We then measure the proba-
bility that a transaction incurs a capacity aborts before successfully
completing the N memory accesses. Such probability is calculated
as the ratio between the number of capacity aborts and the total
number of started transactions (excluding the ones failed because
of spurious aborts).

To control as much as possible the transaction footprints, we
need to minimize the amount of auxiliary data structures used to
generate the random access path. To this end, transactions can only
access memory addresses belonging to a large set of D candidates.
Each memory location d 2 D is pre-initialized with a random
address belonging to D. After accessing d, a transaction accesses
the granule at the address encoded in d. In this way, we generate a
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Figure 2: Validating the analytical model (ANA) for the probability
of capacity aborts vs a real system (HAR)

random access path over the D possible addresses using minimal
auxiliary memory during the experiment.

Figure 2 reports the results of the experiments and contrasts
them with the predictions output by our analytical model of ca-
pacity aborts. The plot shows that the model is able to predict well
the probability of a capacity abort as a function of the number of
(tentatively) accessed granules and write access probability, attain-
ing a MAE of 2.12%. The highest error is incurred by the model
for PW = 0.01. This is an effect of the approximation that we
have introduced in Section 4.4 to obtain a closed form solution for
the capacity abort probability. Such approximation, in fact, works
better as PW tends to 1 and, with PW = 0 would yield to a null
probability of incurring a capacity abort, regardless of the number
of performed accesses.

We now evaluate the accuracy of the presented analytical
model as a whole. In order to stress its prediction capabilities,
we use a synthetic benchmark that generates different contention
levels and access patterns. In total, we consider a set of 380
workloads, obtained by varying the workload parameters as fol-
lows: ✓ 2 {1, 2, 3, 4}, B 2 {2, 4, 6}, L 2 {2, 5, 10, 20},
D 2 {512, 2048, 8192, 32768}, PW 2 {0.5, 1.0}.

A micro-benchmark launches ✓ concurrent threads pinned to
different physical cores, hence, not sharing private caches and other
resources. These threads start transactions that perform L accesses
uniformly at random over a predefined granule pool of size D.

The memory accesses of a transaction are performed as follows.
First, a random random value 0  g < D is generated, such
that g is different from previously generated accesses. Then, with
probability PW the transaction writes g; with probability 1 � PW

the transaction reads g. The granules fit an entire cache line and are
aligned in memory to avoid aliasing conflicts.

The CPU demand of a transaction depends on the number L
of accessed granules. For each of the considered values of L, we
measure the corresponding CPU demand C, which we provide as
input to the model.

In Figure 3 we report a scatterplot comparing the real and
predicted probability of abort and throughput. The reported results
for the real system are obtained as the average of 10000 executions,
from which we removed the first and last quartile to filter out
outliers. Presented error metrics are MAPE, MAE and the Pearson
correlation factor R. The closer R is to 1, the better is the output
prediction of the model.

The reported data confirms the high accuracy of the proposed
model in predicting both the throughput and abort probability of the
system: the MAE for the abort rate is less than 5% and the MAPE
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Conflicts	  (and	  fallback)	  

•  No.	  threads	  =	  {1,2,3,4}	  
•  Retry	  budget	  =	  {2,4,6}	  
•  #	  accesses	  in	  a	  tx	  =	  {2,5,10,20}	  
•  Data	  set	  size	  =	  {512,	  2048,	  8192,	  32768}	  
•  Prob.	  that	  an	  access	  is	  a	  write	  ={0.5,	  1.0}	  

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.
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for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.
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Conclusions	  and	  future	  work	  

•  First	  analy8cal	  model	  of	  HTM	  
–  focus	  on	  capacity,	  conflicts	  and	  fallback	  
– based	  on	  empirical	  valida8on	  of	  hypothesized	  
system	  behavior	  

•  Work	  ahead:	  
– Valida8on	  with	  complex	  benchmarks	  (STAMP)	  and	  
larger	  parallel	  machines	  

– Approximate/more	  scalable	  analy8cal	  model	  of	  
conten8on	  

– Modelling	  IBM’s	  POWER8	  
•  scalability	  analysis	  up	  to	  1000	  cores!	  
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