
Towards	
 White-­‐Box	
 Modeling	
 of	

Hardware	
 Transac8onal	
 Memory	

Systems	
 	

	

Daniel	
 Castro1,	
 Diego	
 Didona2,	
 Paolo	
 Romano1	

	

1Lisbon	
 University	
 &	
 INESC-­‐ID,	
 Portugal	

2EPFL,	
 Switzerland	

Roadmap	

•  Mo8va8on:	
 Paolo’s	
 HTM	
 Hype	
 Cycle	

•  Goals,	
 Approach,	
 Challenges	

•  Related	
 work	

•  Reverse	
 engineering	
 Intel’s	
 TSX	

•  A	
 white-­‐box	
 model	
 of	
 TSX:	

– concurrency	
 control	

– capacity	

•  Valida8on	

Paolo’s	
 HTM	
 Hype	
 Cycle	

Innova8on	

Trigger	

Ex
pe

ct
a(

on
s	

Peak	
 of	

Inflated	

Expecta8ons	

Trough	
 of	

Disillusionment	

Slope	
 of	
 	

Enlightment	

Concep8on	

[ISCA93]	

Mul8core	

revolu8on	

~2002	

Boom	
 of	
 TM:	

focus	
 on	
 STM	

HTM	
 will	
 fix	

STM’s	
 performance	

HTM	
 turns	
 	

mainstream:	

TSX,	
 P8	

HTM	
 is	
 not	
 the	

silver	
 bullet,	
 e.g.:	

STAMP	

Plateau	
 of	

Produc8vity	

HTM	
 can	
 shine!	
 	

•  DBMS	
 indexes	

•  auto-­‐tuning	

•  security	

•  exploi8ng	
 advanced	

TM	
 features	
 (e.g.,	
 P8	

[EuroSys16])	

Roadmap	

•  Mo8va8on:	
 Paolo’s	
 HTM	
 Hype	
 Cycle	

•  Goals,	
 Approach,	
 Challenges	

•  Related	
 work	

•  Reverse	
 engineering	
 Intel’s	
 TSX	

•  A	
 white-­‐box	
 model	
 of	
 TSX:	

– concurrency	
 control	

– capacity	

•  Valida8on	

Goals	

•  Improve	
 our	
 ability	
 to:	

1.  understand,	
 and	

2.  predict	

performance	
 of	
 HTM	
 implementa8ons	

– both	
 current	
 and	
 future	
 ones	

•  Current	
 work	
 focuses	
 on	
 TSX	

– Work	
 in	
 progress	
 on	
 IBM’s	
 POWER8	
 	

Approach	

•  White-­‐box	
 analy8cal	
 model	
 of	
 HTM	
 performance:	

–  focus	
 on	
 performance	
 dynamics	
 due	
 to:	

•  capacity	
 limita8ons	

•  conflicts	
 between	
 transac8ons	

•  impact	
 of	
 fallback	
 path	
 acquisi8on	
 (global	
 lock)	

•  Previous	
 works	
 focused	
 on	
 black-­‐box	
 models:	

–  poor/no	
 human	
 interpretability	

•  do	
 not	
 really	
 contribute	
 to	
 deepen	
 our	
 understanding	

–  limited	
 extrapola8on	
 power	

•  e.g.,	
 what	
 if:	
 capacity	
 doubled?	
 CPU	
 had	
 1000	
 cores?	

Challenges	
 (1/2)	

•  White-­‐box	
 models	
 require	
 knowledge	
 on	

internals	
 of	
 target	
 system:	

–  internal	
 implementa8on	
 of	
 TSX	
 is	
 undisclosed	

– some	
 preliminary	
 studies	
 do	
 exist	
 and	
 help	

[PACT14,	
 IPDPS14,	
 MIT15]	

– but	
 some	
 relevant	
 details	
 are	
 s8ll	
 unclear:	

•  effec8ve	
 capacity	
 for	
 transac8ons	
 that	
 issue	
 different	

mixes	
 of	
 loads/stores	
 	

•  resolu8on	
 policy	
 for	
 transac8onal	
 conflicts	

Challenges	
 (2/2)	

•  Tame	
 the	
 complexity	
 of	
 HTM	
 implementa8ons	

•  Models	
 are	
 an	
 inherent	
 approxima8on	
 of	

reality	

•  The	
 art	
 of	
 white-­‐box	
 performance	
 modelling:	

– pick	
 the	
 “right”	
 approxima8ons	

– make	
 the	
 model	
 simple	
 enough	
 to	
 be:	

1.  treatable	
 and	
 computable	
 efficiently	

2.  accurate	
 enough	
 to	
 be	
 useful	
 in	
 prac8ce	

Roadmap	

•  Mo8va8on:	
 Paolo’s	
 HTM	
 Hype	
 Cycle	

•  Goals,	
 Approach,	
 Challenges	

•  Related	
 work	

•  Reverse	
 engineering	
 Intel’s	
 TSX	

•  A	
 white-­‐box	
 model	
 of	
 TSX:	

– concurrency	
 control	

– capacity	

•  Valida8on	

Related	
 work	

•  Ample	
 literature	
 on	
 modeling	
 of	
 DBMS’s	

concurrency	
 control	
 performance:	

–  both	
 white-­‐	
 and	
 black-­‐box	
 approaches	

–  relevant	
 differences:	

•  no	
 capacity	
 limita8ons	

•  no	
 fallback	
 path	

•  Several	
 white-­‐box	
 models	
 targeted	
 STM,	
 but:	

–  different	
 concurrency	
 control	
 scheme	

–  no	
 capacity	
 limita8ons	

–  no	
 fallback	
 path	

Roadmap	

•  Mo8va8on:	
 Paolo’s	
 HTM	
 Hype	
 Cycle	

•  Goals,	
 Approach,	
 Challenges	

•  Related	
 work	

•  Reverse	
 engineering	
 Intel’s	
 TSX	

•  A	
 white-­‐box	
 model	
 of	
 TSX:	

– concurrency	
 control	

– capacity	

•  Valida8on	

What	
 we	
 know	
 about	
 TSX	

Concurrency	
 control	

•  conflicts	
 are	
 eagerly	

detected	

–  non-­‐transac8onal	
 opera8ons	

cause	
 immediate	
 abort	
 of	

conflict	
 transac8ons:	

–  e.g.,	
 fallback	
 path	

Capacity	

•  stores	
 maintained	
 in	
 L1	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 stores	
 can	
 achieve	

~90%	
 of	
 max	
 L1	
 capacity	

•  loads	
 are	
 not	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 load	
 achieve	
 ~50%	

of	
 L3	
 capacity	

•  way	
 more	
 than	
 L1	
 &	
 L2’s	
 capacity	

	

What	
 we’d	
 like	
 to	
 know	
 about	
 TSX	

Concurrency	
 control	

•  conflicts	
 are	
 eagerly	

detected	

–  non-­‐transac8onal	
 opera8ons	

cause	
 immediate	
 abort	
 of	

conflict	
 transac8ons:	

–  e.g.,	
 fallback	
 path	

•  Upon	
 a	
 conflict	
 between	

two	
 or	
 more	
 transac8ons:	

–  which	
 one	
 is	
 aborted?	

Capacity	

•  stores	
 maintained	
 in	
 L1	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 stores	
 can	
 achieve	

~90%	
 of	
 max	
 L1	
 capacity	

–  L1	
 is	
 private,	
 so:	

•  why	
 not	
 its	
 whole	
 capacity?	

•  loads	
 are	
 not	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 load	
 achieve	
 ~50%	

of	
 L3	
 capacity	

•  way	
 more	
 than	
 L1	
 &	
 L2’s	
 capacity	

•  why	
 not	
 whole	
 L3	
 capacity?	

–  what	
 if	
 transac8ons	
 execute	
 mixes	

of	
 loads	
 and	
 stores?	

	

Conflict	
 resolu8on	
 policy	
 in	
 TSX	

•  Simple	
 experiment:	

–  run	
 two	
 concurrently	

–  inject	
 properly	
 tuned	
 delays	
 to	
 cause:	

•  read	
 aper	
 write	

•  write	
 aper	
 write	
 conflicts	

•  write	
 aper	
 write	

•  Conclusion:	

– “Last	
 requester	
 wins”	
 policy	

– Spoiler:	
 not	
 the	
 same	
 for	
 POWER8!	

What	
 we’d	
 like	
 to	
 know	
 about	
 TSX	

Concurrency	
 control	

•  conflicts	
 are	
 eagerly	

detected	

–  non-­‐transac8onal	
 opera8ons	

cause	
 immediate	
 abort	
 of	

conflict	
 transac8ons:	

–  e.g.,	
 fallback	
 path	

•  Upon	
 a	
 conflict	
 between	

two	
 or	
 more	
 transac8ons:	

–  which	
 one	
 is	
 aborted?	

•  “Last	
 requester	
 wins”	

Capacity	

•  stores	
 maintained	
 in	
 L1	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 stores	
 can	
 achieve	

~90%	
 of	
 max	
 L1	
 capacity	

–  L1	
 is	
 private,	
 so:	

•  why	
 not	
 its	
 whole	
 capacity?	

•  loads	
 are	
 not	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 load	
 achieve	
 ~50%	

of	
 L3	
 capacity	

•  way	
 more	
 than	
 L1	
 &	
 L2’s	
 capacity	

•  why	
 not	
 whole	
 L3	
 capacity?	

–  what	
 if	
 transac8ons	
 execute	
 mixes	

of	
 loads	
 and	
 stores?	

	

Actual	
 store	
 capacity	

•  Nguyen	
 [MIT15]	
 hypothesized	
 the	
 presence	
 of	
 some	

transac8onal	
 metadata	
 in	
 L1:	

–  how	
 large	
 is	
 this	
 metadata?	
 10%	
 of	
 the	
 L1	
 cache?	

•  We	
 seek	
 an	
 answer	
 by:	

–  simula8ng	
 an	
 L1	
 with	
 the	
 same	
 geometry	
 as	
 our	
 plaqorm:	

•  512	
 cache	
 lines,	
 8-­‐way	
 associa8vity	
 (Haswell	
 Xeon	
 V3,	
 4	
 cores)	

–  placing	
 metadata	
 in	
 X	
 random	
 cache	
 lines	

–  emula8ng	
 a	
 tx	
 that	
 issues	
 sequen8al	
 stores	
 star8ng	
 from	
 a	

random	
 address	

–  repor8ng	
 a	
 capacity	
 if	
 we	
 evict	
 a	
 metadata	
 or	
 a	
 cache	
 line	

wriren	
 by	
 the	
 transac8on	

Actual	
 store	
 capacity	

•  Nguyen	
 [MIT15]	
 hypothesized	
 the	
 presence	
 of	
 some	

transac8onal	
 metadata	
 in	
 L1:	

–  how	
 large	
 is	
 this	
 metadata?	
 10%	
 of	
 the	
 L1	
 cache?	

è	
 ~3	
 lines	
 are	
 occupied	
 by	
 transac8onal	
 meta-­‐data	

 430

 440

 450

 460

 470

 480

 490

 500

 510

 520

 0 2 4 6 8 10

Av
g.

 le
ng

th
 o

f a
 su

cc
es

sfu
l tr

an
sa

cti
on

Cache lines occupied by transactional metadata

Simulation
TSX

What	
 we’d	
 like	
 to	
 know	
 about	
 TSX	

Concurrency	
 control	

•  conflicts	
 are	
 eagerly	

detected	

–  non-­‐transac8onal	
 opera8ons	

cause	
 immediate	
 abort	
 of	

conflict	
 transac8ons:	

–  e.g.,	
 fallback	
 path	

•  Upon	
 a	
 conflict	
 between	

two	
 or	
 more	
 transac8ons:	

–  which	
 one	
 is	
 aborted?	

•  “Last	
 requester	
 wins”	

Capacity	

•  stores	
 maintained	
 in	
 L1	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 stores	
 can	
 achieve	

~90%	
 of	
 max	
 L1	
 capacity	

–  Why	
 not	
 its	
 whole	
 capacity?	

•  Transac8onal	
 metadata	

•  loads	
 are	
 not	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 load	
 achieve	
 ~50%	

of	
 L3	
 capacity	

•  way	
 more	
 than	
 L1	
 &	
 L2’s	
 capacity	

•  why	
 not	
 whole	
 L3	
 capacity?	

–  what	
 if	
 transac8ons	
 execute	
 mixes	

of	
 loads	
 and	
 stores?	

	

Capacity	
 with	
 load/store	
 mixes	

•  Experiment:	

–  Tx	
 accesses	
 (cache	
 aligned)	
 addresses	
 selected	
 unif.	
 at	
 rand.	

–  each	
 access	
 is	
 a	
 store	
 (resp.	
 load)	
 with	
 prob.	
 PW	
 (resp.	
 1-­‐PW)	

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096

Pr
ob

ab
ilit

y
of

 c
ap

ac
ity

 a
bo

rt
(%

)

Number of cache lines

HAR PW = 100%
HAR PW = 50%
HAR PW = 10%
HAR PW = 1%

Capacity	
 with	
 load/store	
 mixes	

•  Key	
 observa8on:	

–  when	
 50%	
 of	
 accesses	
 are	
 loads,	
 capacity	
 does	
 not	
 double	

•  only	
 ~10%	
 increase	
 on	
 average	

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096

Pr
ob

ab
ilit

y
of

 c
ap

ac
ity

 a
bo

rt
(%

)

Number of cache lines

HAR PW = 100%
HAR PW = 50%
HAR PW = 10%
HAR PW = 1%

Capacity	
 with	
 load/store	
 mixes	

•  Key	
 observa8on:	

–  when	
 50%	
 of	
 accesses	
 are	
 loads,	
 capacity	
 does	
 not	
 double	

•  only	
 ~10%	
 increase	
 on	
 average	

	

•  Hypothesis:	

1.  loads	
 can	
 trigger	
 evic8ons	
 in	
 L1:	

•  L1	
 evic8on	
 of	
 wriren	
 cache	
 lines:	

è	
 capacity	
 abort	

•  L1	
 evic8on	
 of	
 read	
 cache	
 lines:	

è	
 safe,	
 metadata	
 stored	
 elsewhere	

2.  for	
 non-­‐minimal	
 values	
 of	
 PW	
 the	
 effec8ve	
 capacity	
 is	
 largely	
 	

determined	
 	
 by	
 evic8ons	
 in	
 L1:	

•  intui8on:	
 L3	
 is	
 256x	
 larger	
 than	
 L1	

	

Capacity	
 with	
 load/store	
 mixes	

•  We	
 use,	
 again,	
 simula8on	
 to	
 validate	
 our	
 hypothesis	
 &	

approxima8on.	

	

	

•  They	
 hold	
 for	
 write	
 prob.	

as	
 small	
 as	
 0.1%!	

	

	

•  Consequences:	

–  for	
 modelling	
 purposes	
 we	
 do	
 not	
 care	
 where/how	
 TSX	
 stores	

metadata	
 of	
 loaded	
 cache	
 lines	

–  models	
 considering	
 only	
 L1	
 will	
 have	
 good	
 accuracy	

	

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096

Pr
ob

ab
ilit

y
of

 c
ap

ac
ity

 a
bo

rt
(%

)

Number of cache lines

HAR PW = 100%
SIM PW = 100%
HAR PW = 50%
SIM PW = 50%

HAR PW = 10%
SIM PW = 10%
HAR PW = 1%
SIM PW = 1%

HAR PW = 0.1%
SIM PW = 0.1%

What	
 we’d	
 like	
 to	
 know	
 about	
 TSX	

Concurrency	
 control	

•  conflicts	
 are	
 eagerly	

detected	

–  non-­‐transac8onal	
 opera8ons	

cause	
 immediate	
 abort	
 of	

conflict	
 transac8ons:	

–  e.g.,	
 fallback	
 path	

•  Upon	
 a	
 conflict	
 between	

two	
 or	
 more	
 transac8ons:	

–  which	
 one	
 is	
 aborted?	

•  “Last	
 requester	
 wins”	

Capacity	

•  stores	
 maintained	
 in	
 L1	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 stores	
 can	
 achieve	

~90%	
 of	
 max	
 L1	
 capacity	

–  Why	
 not	
 its	
 whole	
 capacity?	

•  Transac8onal	
 metadata	

•  loads	
 are	
 not	

–  transac8ons	
 that	
 only	
 issue	

sequen8al	
 load	
 achieve	
 ~50%	
 of	

L3	
 capacity	

•  way	
 more	
 than	
 L1	
 &	
 L2’s	
 capacity	

•  why	
 not	
 whole	
 L3	
 capacity?	

–  transac8ons	
 execu8ng	
 mixes	
 of	
 loads	

and	
 stores	
 are	
 constrained	
 by	
 L1	

	

need	

Roadmap	

•  Mo8va8on:	
 Paolo’s	
 HTM	
 Hype	
 Cycle	

•  Goals,	
 Approach,	
 Challenges	

•  Related	
 work	

•  Reverse	
 engineering	
 Intel’s	
 TSX	

•  A	
 white-­‐box	
 model	
 of	
 TSX:	

–  overview	

–  concurrency	
 control	

–  capacity	

•  Valida8on	

Key	
 parameters	
 and	
 assump8ons	

•  θ	
 threads	
 running	
 concurrently	
 on	
 different	
 physical	
 cores:	

–  no	
 Hyper-­‐threading	

•  Aper	
 B	
 aborts,	
 the	
 fallback	
 path	
 (global	
 lock)	
 is	
 ac8vated	

•  Key	
 workload	
 characteris8cs:	

–  Interleaving	
 of	
 transac8onal/non-­‐transac8onal	
 code	

–  Transac8on	
 length	
 (#	
 accesses)	
 and	
 dura8on	

–  Transac8on	
 data	
 access	
 parerns	

•  Target	
 KPIs:	

–  avg.	
 throughput/execu8on	
 8me	
 (including	
 aborted	
 retries)	

–  abort	
 probability:	
 conten8on,	
 fallbacks,	
 capacity	

Key	
 parameters	
 and	
 assump8ons:	

Tx/non-­‐tx	
 code	
 blocks	

•  Threads	
 execute	
 either	
 transac8onal	
 or	
 non-­‐
transac8onal	
 code	
 block	
 with	
 probability	
 Pt	

•  Data	
 race	
 freedom:	
 	

– Transac8onal	
 and	
 non-­‐transac8onal	
 code	
 access	

disjoint	
 data	

– 1	
 notable	
 excep8on:	
 the	
 fallback	
 lock	

Workload assumptions

A thread may start:
Non-Transactional Code Blocks (NTCBs);

With probability 1 ≠ pt

Transactions Code Blocks (TCBs);
With probability pt

Non-transactions do not conflict with transactions;

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 15 / 32

Workload assumptions
Transaction length:

TCBs access a number of granules L and have a duration C :
Assume L known and fixed;

Assume C a known average value, exponentially distributed;

Each W = C/L time interval transactions access a granule;

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 16 / 32

Key	
 parameters	
 and	
 assump8ons:	

Transac8on	
 length	
 and	
 dura8on	

•  Transac8ons	
 perform,	
 on	
 average,	
 L	
 accesses,	
 each	
 mapping	

to	
 a	
 different	
 cache	
 line	

–  if	
 mul8ple	
 accesses	
 map	
 to	
 the	
 same	
 cache	
 line,	
 only	
 the	
 first	
 is	

accounted	
 for	

•  Dura8on	
 of	
 transac8ons	
 is	
 exponen8ally	
 distributed	
 with	

mean	
 value	
 C	

–  C/L:	
 avg.	
 8me	
 between	
 two	
 memory	
 accesses	

–  1/C	
 <<	
 hardware	
 8mer	
 interrupt	
 frequency	

Transac8on	
 data	
 access	
 parerns	

•  Tx	
 accesses	
 are	
 uniformly	
 distributed	
 across	
 D	

granules:	

– each	
 granule	
 has	
 the	
 size	
 of	
 a	
 cache	
 line	

– non-­‐uniform	
 access	
 parerns	
 can	
 be	
 approximated	

via	
 an	
 “equivalent”	
 (smaller)	
 uniform	
 one	
 [TAS14]	

•  Each	
 access	
 is	
 a	
 store,	
 	

resp.	
 load,	
 with	
 probability	
 	

PW,	
 resp.	
 1-­‐PW	

Workload assumptions

Access to shared resources

Assume transactions access a granule
pool of size of fixed size D;

Accesses are uniformly distributed,
every granule is equiprobable;

Larger D results in smaller contention:
D æ Œ then there is no contention

Related work on modeling non-uniform
accesses [Didona, 2014]

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 18 / 32

Modelling	
 execu8on	
 of	
 threads	
 (1/3)	

•  At	
 any	
 point	
 in	
 8me,	
 the	
 state	
 of	
 the	
 system	
 can	
 be	

described	
 as	
 follows:	

–  txi:	
 #threads	
 running	
 transac8ons	
 with	
 i	
 	
 	
 	
 [1,B]	
 retries	
 lep	

–  nt:	
 #threads	
 execu8ng	
 non-­‐transac8onal	
 code	

– ':	
 #threads	
 in	
 the	
 fallback	
 path	

where	
 Σi=1..B	
 txi	
 +	
 nt	
 +	
 z	
 =	
 θ	
 	
 	
 //	
 tot	
 thread	
 count	

•  We	
 encode	
 the	
 system’s	
 state	
 via	
 tuples	
 of	
 the	
 	
 form:	

	
 <txB,	
 …	
 ,txi	
 ,…	
 ,tx1	
 ,nt	
 ,	
 '>	

•  Each	
 state:	

–  has	
 a	
 different	
 abort	
 probability	

–  produces	
 a	
 different	
 throughput	

∈

Modelling	
 execu8on	
 of	
 threads	
 (2/3)	

•  …and	
 model	
 execu8on	
 via	
 a	
 Markov	
 Chain:	

•  whose	
 transi8on	
 rates	
 depend	
 on	
 source	
 states’:	

•  throughput	
 	

•  abort	
 probability	

•  fallback	
 path	
 ac8va8on	
 probability	

Modelling	
 execu8on	
 of	
 threads	
 (3/3)	

•  The	
 use	
 of	
 a	
 Markov	
 Chain	
 (MC)	
 allows	
 for	

simplifying	
 modelling:	

–  target	
 KPIS	
 can	
 be	
 computed	
 on	
 a	
 state-­‐by-­‐state	
 basis:	

•  thus	
 focusing	
 on	
 a	
 simpler	
 case	
 	

–  next,	
 the	
 sta8onary	
 distribu8on,	
 	
 	
 	
 	
 ,	
 of	
 the	
 MC	
 can	
 be	

computed:	
 	

•  probability	
 to	
 be	
 in	
 each	
 state	
 of	
 the	
 MC	

–  finally,	
 the	
 KPIs	
 for	
 the	
 whole	
 system	
 are	
 obtained	
 as	

the	
 average	
 of	
 the	
 KPIs	
 in	
 each	
 state	
 weighted	
 by	
 the	

probability	
 of	
 each	
 state,	
 e.g.:	

Modeling the system

Stationary distribution of this Markov-chain, fįs :
probability of being in each state;

Probability of abort and throughput are computed as the weighted
average for all states;

Probability of abort: pa =
q

sœS fįspa,s

States with Ø 1 fall-back transactions: pa,s = 1;
Normalize pa to not include these states;

Throughput: X =
q

sœS fįsXs

States with Ø 1 fall-back transactions: Xs = µf
Other states: Xs = ◊tµt

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 20 / 32

Modeling the system

Stationary distribution of this Markov-chain, fįs :
probability of being in each state;

Probability of abort and throughput are computed as the weighted
average for all states;

Probability of abort: pa =
q

sœS fįspa,s

States with Ø 1 fall-back transactions: pa,s = 1;
Normalize pa to not include these states;

Throughput: X =
q

sœS fįsXs

States with Ø 1 fall-back transactions: Xs = µf
Other states: Xs = ◊tµt

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 20 / 32

Roadmap	

•  Mo8va8on:	
 Paolo’s	
 HTM	
 Hype	
 Cycle	

•  Goals,	
 Approach,	
 Challenges	

•  Related	
 work	

•  Reverse	
 engineering	
 Intel’s	
 TSX	

•  A	
 white-­‐box	
 model	
 of	
 TSX:	

–  overview	

–  concurrency	
 control	

–  capacity	

•  Valida8on	

Modelling	
 transac8on	
 conflicts	

•  Avg.	
 frequency	
 of	
 conflicts	
 for	
 a	
 tx	
 at	
 its	
 i-­‐th	

opera8on:	

	

•  Probability	
 of	
 reaching	
 opera8on	
 i,	
 PR(i),	
 is	

computed	
 recursively:	

Every	
 W=C/L	
 8me	
 units,	

the	
 remaining	
 θt-­‐1	

transac8onal	
 threads	

access	
 an	
 item	

This	
 access	
 must	
 target	

one	
 of	
 the	
 i	
 items	

already	
 accessed	
 by	
 the	

transac8on	

To	
 generate	
 a	
 conflict,	
 	
 at	

least	
 one	
 of	
 the	
 two	

accesses	
 must	
 be	
 a	
 write	

H (i) = (θ
t −1)
W

i
D
(1− (1−PW)

2

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC)

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.

5 2017/1/29

Modelling	
 aborts	
 due	
 to	
 fallbacks	

•  When	
 a	
 transac8ons	
 with	
 1	
 retry	
 lep	
 aborts	

due	
 to	
 a	
 conflict,	
 it	
 will	
 cause	
 the	
 abort	
 of	
 any	

other	
 concurrent	
 transac8on	

•  We	
 model	
 this	
 by:	

– first	
 compu8ng	
 abort	
 probability	
 w/o	
 fallbacks	

– correc8ng	
 the	
 frequency	
 of	
 conflicts:	

– compu8ng	
 again	
 the	
 abort	
 probability	

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC)

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.

5 2017/1/29

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC)

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.

5 2017/1/29

Roadmap	

•  Mo8va8on:	
 Paolo’s	
 HTM	
 Hype	
 Cycle	

•  Goals,	
 Approach,	
 Challenges	

•  Related	
 work	

•  Reverse	
 engineering	
 Intel’s	
 TSX	

•  A	
 white-­‐box	
 model	
 of	
 TSX:	

–  overview	

–  concurrency	
 control	

–  capacity	

•  Valida8on	

Modelling	
 Capacity	
 Aborts	

Write-­‐only	
 workloads	
 (PW=1)	

•  Modelled	
 as	
 a	
 ball	
 into	
 bins	
 problem:	

–  C-­‐associa8ve	
 cache	
 with	
 B	
 sets	
 	
 è	
 	
 B	
 bins,	
 each	
 with	
 capacity	
 C	

•  Compute	
 probability	
 that	
 at	
 least	
 a	
 bin	
 is	
 full	
 aper	
 i	
 balls.	
 	

•  Different	
 sequences	
 of	
 I	
 ball	
 throws	
 w/o	
 causing	
 any	
 bin	

overflows	
 (up	
 to	
 C	
 ball	
 in	
 each	
 bin):	

Capacity exceptions

Cache can be seen has a set of bins with a given capacity:
B bins;
Each bin has capacity C ;

Reduce the problem of computing probability of capacity exception in
TSX after i accesses to the problem of computing probability that at
least one bin is full after launching i balls.

Number of states reachable after throwing i balls such that no bin
exceeds its capacities, i.e., valid states:

NB,C,I =
maxcÿ

x=minc

3
B
x

4 x-1Ÿ

y=0

3
I-yC
C

4
◊ NB-x,C-1,I-xC

maxc is the maximum full bins, i.e.,
% I

C
&
;

minc is the minimum full bins, i.e., max(0, B ◊ (C ≠ 1));

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 23 / 32

max(0,	
 I-­‐	
 B(C-­‐1)),	

distribute	
 balls	
 to	

bins	
 in	
 round-­‐robin	

	
 	
 	
 	
 	
 	
 all	
 balls	
 hit	
 the	
 same	

bin,	
 un8l	
 this	
 is	
 full	

I
C
!

"!
#

$#

no.	
 ways	
 in	
 which	
 	

we	
 can	
 choose	
 x	

bins	
 out	
 of	
 B	

no.	
 ways	
 in	
 which	
 we	
 can	

throw	
 Cx	
 balls	
 filling	
 x	
 bins	

we	
 are	
 lep	
 with:	

-­‐	
 I-­‐xC	
 balls	

-­‐	
 B-­‐x	
 bins,	
 not	
 filled	

Modelling	
 Capacity	
 Aborts	

Write-­‐only	
 workloads	
 (PW=1)	

•  Cast	
 to	
 a	
 ball	
 into	
 bins	
 problems:	

–  C-­‐associa8ve	
 cache	
 with	
 B	
 sets	
 =è	
 B	
 bins,	
 each	
 with	
 capacity	
 C	

•  Compute	
 probability	
 that	
 at	
 least	
 a	
 bin	
 is	
 full	
 aper	
 i	
 balls.	
 	

•  Different	
 sequences	
 of	
 I	
 ball	
 throws	
 w/o	
 causing	
 any	
 bin	

overflows	
 (up	
 to	
 C	
 ball	
 in	
 each	
 bin):	

•  Probability	
 that	
 at	
 least	
 one	
 bin	
 overflows	
 aper	
 I	
 balls	
 :	

Capacity exceptions

Cache can be seen has a set of bins with a given capacity:
B bins;
Each bin has capacity C ;

Reduce the problem of computing probability of capacity exception in
TSX after i accesses to the problem of computing probability that at
least one bin is full after launching i balls.

Number of states reachable after throwing i balls such that no bin
exceeds its capacities, i.e., valid states:

NB,C,I =
maxcÿ

x=minc

3
B
x

4 x-1Ÿ

y=0

3
I-yC
C

4
◊ NB-x,C-1,I-xC

maxc is the maximum full bins, i.e.,
% I

C
&
;

minc is the minimum full bins, i.e., max(0, B ◊ (C ≠ 1));

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 23 / 32

The throughput of the system is defined as the the rate at which
any thread in the system completes a code block (NTCB or TCB).
It is computed as the weighted average of the system being in a
state si times the throughput in si. On its turn, the throughput in si
is the sum of the rates corresponding to the completion of a NTCB
or the commit of a TCB. We refer to the values of µ0

t computed in
state s as µ0

t,s.

X =
X

s(ti,ft=0,nt)2S

~⇡s(ti µ
0
t,s+nt µn)+

X

s(ti,ft�1,nt)2S

~⇡s(nt µn+µf)

(9)

We note that in a state s in which there is at least one transaction
in the fall-back path, this equation captures the fact that there is
only one transaction contributing to the throughput, by committing
with a rate µf =

1
C

. In a state s in which ft = 0, instead, the
ti hardware transactions all contribute to the throughput of the
system, with a rate tiµt,s.

To obtain the response time of a transaction, we exploit Little’s
law [28]. We first express X as the product of the number of active
threads ✓ and the inverse of the average response time of a code
block, whether transactional or not, R⇤. Once we obtain R⇤ we
note that it corresponds to a weighted average of the response
time of a transactional code block R⇤

t and of a non-transactional
code block R⇤

n. Because the system is stable, the probability that a
successfully executed code block is (non) transactional corresponds
to the probability that a (non) transactional code block is started.
Hence, R⇤

= ptR
⇤
t + (1 � pt)R

⇤
n. Because R⇤

n is equal to Cn

and it is given as input to the model, we can solve the equation and
obtain R⇤

t .
The average abort probability PA is computed as the weighted

average of the abort probability values obtained in each state s,
noted p0a,s. Because a transaction cannot abort when running in the
fall-back path, we do not consider the states in which ft > 0:
PA =

P
s(i,f=0,n)2S ~⇡sp

0
a,s.

4.4 Modelling capacity aborts
In this section we discuss how the model presented so far can be
extended, in a modular way, with an additional model aimed solely
at predicting the probability, noted PC(i), that a transaction incurs
a capacity abort when it issues its i-th operation.

The integration of these two models is indeed straightforward
as it suffices to observe that the the probability to reach operation
i when both aborts due to conflicts and capacity exceptions are
possible, noted P 00

R(i), can be expressed as:

P 00
R(i) = PR(i)(1� PC(i)) (10)

Let us now discuss how to derive PC(i). In the light of the
findings reported in Section 3.2, our model assumes that a capacity
abort can only be triggered by the eviction from the of a cache
line that was written by a transaction. To compute the probability
that a transactions experiences a capacity abort at its i-th access
we compute the probability that two events jointly happen: i) the
corresponding granule is stored in a full set of the L1 cache, and ii)
the cache line selected for eviction corresponds to a written granule.

We cast the problem of finding this probability to a variation of
the balls-into-bins problem. In our settings, a ball is an accessed
granule, the bins (B) are the sets of the cache, and the capacity of
each bin (C) is the associativity of the cache.

Each memory access performed by a transaction is a ball thrown
at a bin chosen uniformly at random. The variation with respect
to the classic bin-into-balls-problem is two-fold: i) a ball can be
a write ball (with probabilityPW) or a read ball (with probability
1 � PW); ii) if a bin is full, a read ball can be removed from it (if
selected by the eviction policy) to make room for another ball.

Let us start by considering the simpler case in which only write
accesses are performed, i.e., only write balls exist. We define a
valid sequence of length I , a sequence of I ball throws such that
no bin overflows, i.e., no bin receives more than C balls. The total
number of possible sequences of length I with B bins is BI . These
sequences also include invalid ones, i.e., sequences in which bins
can have been assigned more than C balls. We note NB,C,I the
number of valid sequences after I balls have been thrown. Then,
the probability that at least one bin experiences an overflow after
throwing I balls, noted P (c  I) is:

P (c  I) = 1� NB,C,I

BI
(11)

We compute NB,C,I in the following way. Assume that exactly
x bins have been filled after I balls are thrown. The number of
combinations of balls-to-bins allocations is given by the product of
i) the number of ways in which the x bins can be filled with xC
balls and ii) the number, ⌫, of ways in which the the remaining
I � xC balls can be assigned to the remaining B � x bins without
fully filling them. It follows that ⌫ can be computed as NB-x,C-1,I-xC,
i.e., the number of ways in which the remaining I � xC balls can
be thrown in B � x bins in such a way that, at most, every bin is
filled with C � 1 balls.

The minimum value for x is the number of bins that are filled
if balls are assigned to bins in a round-robin fashion: minc =

max(0, I � B(C � 1)). The maximum value for x is the number
of bins that get filled if the balls are thrown to the same bin until it
gets full: maxc = bI/Bc. These x bins can be chosen out of the
total B possible in

�
B
x

�
ways. Finally, the number of ways in which

Cx balls can be thrown in x bins in such a way that all the x bins
are filled is

Qx-1
y=0

�I-yC
C

�
. The resulting equation for NB,C,I is then

NB,C,I =

maxcX

x=minc

NB-x,C-1,I-xC

B

x

!
x-1Y

y=0

I-yC
C

!
(12)

We now describe how we extend this model to take into account
that the capacity abort probability also varies with the probability
of write, PW . In this case, the number of valid sequences of a
given length I is larger than for the case of PW = 1, since if a
full bin contains at least a read ball b, it can still accommodate
an additional (read/write) ball, provided that b is selected by the
eviction policy. Given the combinatorial nature of the problem,
the number of scenarios to be accounted for in order to derive an
exact probabilistic solution increases dramatically for the case of
PW 6= 1, along with the complexity and computational cost of the
resulting model.

We propose therefore an approximate solution technique that is
based on the following approach. Let us introduce the notations: i)
P (c  IPW

), to refer to the probability of having a capacity abort
upon during any of the first I accesses of a transaction that executes
writes with probability PW ; ii) P (c = IPW ^ ¬c < (I � 1)

PW
),

to refer to the probability of having a capacity abort exactly at
the I-th access and of not incurring capacity aborts during the
previous I-1 operations, where each of the I operations is a write
with probability PW .

We start by expressing P (c = IPW ^ ¬c < (I � 1)

PW
) as:

P (c = IPW |¬c < I � 1

PW
)P (¬c < (I � 1)

PW
) (13)

Next we observe that the probability of having a capacity ex-
ception at operation I is not affected by whether this operation is a
read or write , but only by whether the corresponding ball I hits a
full bin and causes the “eviction” of a write ball. Hence:

P (c = IPW |¬c < (I � 1)

PW
) = P (c = I|¬c < (I � 1)

PW
)

6 2017/1/29

Modelling	
 Capacity	
 Aborts	

Mixed	
 read/write	
 workloads	

•  As	
 already	
 discussed,	
 models	
 can	
 focus	
 only	

on	
 L1	
 dynamics	
 for	
 Pw	
 >	
 0.1%	

•  But	
 the	
 exact	
 computa8on	
 is	
 more	
 complex	

with	
 read/write	
 “balls”:	

– both	
 mathema8cally	
 and	
 computa8onally	

– we	
 propose	
 an	
 approximate	
 approach	

Roadmap	

•  Mo8va8on:	
 Paolo’s	
 HTM	
 Hype	
 Cycle	

•  Goals,	
 Approach,	
 Challenges	

•  Related	
 work	

•  Reverse	
 engineering	
 Intel’s	
 TSX	

•  A	
 white-­‐box	
 model	
 of	
 TSX:	

–  overview	

–  concurrency	
 control	

–  capacity	

•  Valida8on	

Valida8on	

•  Based	
 on	
 Xeon	
 E3-­‐1275	
 v3	
 running	
 at	
 3.5GhZ	

(Haswell),	
 4	
 physical	
 cores	

•  Capacity:	

– conflict	
 free	
 workload,	
 single	
 threaded	

•  Conflicts:	

– short	
 transac8ons,	
 not	
 to	
 cause	
 capacity	
 except.	

•  In	
 both	
 tests	
 we	
 generate	
 uniformly	

distributed	
 accesses	
 over	
 data	
 sets	
 of	
 size	
 D	
 	

	

Probability	
 of	
 Capacity	
 Aborts	

Next, we introduce the following approximation:

P (c = I|¬c < (I � 1)

PW
) ⇡ P (c = I|¬c < (I � 1))PW

namely, we approximate the conditioned probability of having a
capacity after I read/write accesses with the conditioned probability
of having a capacity after I write accesses scaled down by a factor
PW . The latter scaling factor reflects the fact that P (c = I|¬c <
I � 1) is computed assuming that all the full bins after I-1 balls
contain exclusively write balls. Conversely, if transactions issue
write operations with probability PW , on average the full bins after
I � 1 throws will contain only a fraction of write ball equal to
PWC over a total of C balls. This is only an approximation as
the expected number of full bins after I balls when PW < 1 is
smaller than if PW = 1. In fact, if writes are rare (small PW),
one can throw in a single bin a number of balls that largely exceed
the bin’s capacity; when PW = 1, conversely the min number of
full bins is strictly bounded by max(0, I �B(C � 1)) . As we will
show in Section 5, this approximation yields good accuracy for PW

values larger than 1%, which, as discussed in Section 3.2, is also a
necessary condition for modelling accurately the cache dynamics
by modelling solely the L1 dynamics.

P (c = I|¬c < I � 1) can be computed by expressing it
as (P (c  I) � P (c  I � 1))/(1 � P (c < I � 1)) and
exploiting Eq. 11, using the definition of conditioned probability.
P (¬c < (I � 1)

PW
), in Eq. 13, can be expressed as:

P (¬c < (I�1)

PW
) = 1�

I�1X

J=1

P (c = JPW ^¬c < (J �1)

PW
)

and can be computed recursively setting

P (c = 1

PW ^ ¬c < 0

PW
) = 1

.
Finally, P (c  IPW

) can simply be expressed as the sum of the
probabilities of having a capacity abort exactly at operation J , and
not earlier, for all J < I :

P (c  IPW
) =

IX

J=0

P (c = JPW ^ ¬c < (J � 1)

PW
)

5. Validation
This section reports the results of a validation study that compares
the KPIs predicted by the model presented in the previous sections
with those achieved when executing on our target experimental
platform (see Section 3).

We start by validating the accuracy of our model of capacity
aborts, since it is a building block on which the overall perfor-
mance model is built. To this end we run several experiments in
which transactions perform N distinct memory accesses with a
write probability 0.01  PW  1. We then measure the proba-
bility that a transaction incurs a capacity aborts before successfully
completing the N memory accesses. Such probability is calculated
as the ratio between the number of capacity aborts and the total
number of started transactions (excluding the ones failed because
of spurious aborts).

To control as much as possible the transaction footprints, we
need to minimize the amount of auxiliary data structures used to
generate the random access path. To this end, transactions can only
access memory addresses belonging to a large set of D candidates.
Each memory location d 2 D is pre-initialized with a random
address belonging to D. After accessing d, a transaction accesses
the granule at the address encoded in d. In this way, we generate a

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
ro

ba
bi

lit
y

of
 c

ap
ac

ity
 a

bo
rt

(%
)

Number of cache lines

HAR PW = 100%

ANA PW = 100%

HAR PW = 50%

ANA PW = 50%

HAR PW = 10%

ANA PW = 10%

HAR PW = 1%

ANA PW = 1%

Figure 2: Validating the analytical model (ANA) for the probability
of capacity aborts vs a real system (HAR)

random access path over the D possible addresses using minimal
auxiliary memory during the experiment.

Figure 2 reports the results of the experiments and contrasts
them with the predictions output by our analytical model of ca-
pacity aborts. The plot shows that the model is able to predict well
the probability of a capacity abort as a function of the number of
(tentatively) accessed granules and write access probability, attain-
ing a MAE of 2.12%. The highest error is incurred by the model
for PW = 0.01. This is an effect of the approximation that we
have introduced in Section 4.4 to obtain a closed form solution for
the capacity abort probability. Such approximation, in fact, works
better as PW tends to 1 and, with PW = 0 would yield to a null
probability of incurring a capacity abort, regardless of the number
of performed accesses.

We now evaluate the accuracy of the presented analytical
model as a whole. In order to stress its prediction capabilities,
we use a synthetic benchmark that generates different contention
levels and access patterns. In total, we consider a set of 380
workloads, obtained by varying the workload parameters as fol-
lows: ✓ 2 {1, 2, 3, 4}, B 2 {2, 4, 6}, L 2 {2, 5, 10, 20},
D 2 {512, 2048, 8192, 32768}, PW 2 {0.5, 1.0}.

A micro-benchmark launches ✓ concurrent threads pinned to
different physical cores, hence, not sharing private caches and other
resources. These threads start transactions that perform L accesses
uniformly at random over a predefined granule pool of size D.

The memory accesses of a transaction are performed as follows.
First, a random random value 0  g < D is generated, such
that g is different from previously generated accesses. Then, with
probability PW the transaction writes g; with probability 1 � PW

the transaction reads g. The granules fit an entire cache line and are
aligned in memory to avoid aliasing conflicts.

The CPU demand of a transaction depends on the number L
of accessed granules. For each of the considered values of L, we
measure the corresponding CPU demand C, which we provide as
input to the model.

In Figure 3 we report a scatterplot comparing the real and
predicted probability of abort and throughput. The reported results
for the real system are obtained as the average of 10000 executions,
from which we removed the first and last quartile to filter out
outliers. Presented error metrics are MAPE, MAE and the Pearson
correlation factor R. The closer R is to 1, the better is the output
prediction of the model.

The reported data confirms the high accuracy of the proposed
model in predicting both the throughput and abort probability of the
system: the MAE for the abort rate is less than 5% and the MAPE

7 2017/1/29

Conflicts	
 (and	
 fallback)	

•  No.	
 threads	
 =	
 {1,2,3,4}	

•  Retry	
 budget	
 =	
 {2,4,6}	

•  #	
 accesses	
 in	
 a	
 tx	
 =	
 {2,5,10,20}	

•  Data	
 set	
 size	
 =	
 {512,	
 2048,	
 8192,	
 32768}	

•  Prob.	
 that	
 an	
 access	
 is	
 a	
 write	
 ={0.5,	
 1.0}	

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.

Acknowledgments
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via projects UID/CEC/50021/2013 and
PTDC/EEISCR/1743/2014.

8 2017/1/29

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.

Acknowledgments
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via projects UID/CEC/50021/2013 and
PTDC/EEISCR/1743/2014.

8 2017/1/29

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.

Acknowledgments
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via projects UID/CEC/50021/2013 and
PTDC/EEISCR/1743/2014.

8 2017/1/29

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.

Acknowledgments
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via projects UID/CEC/50021/2013 and
PTDC/EEISCR/1743/2014.

8 2017/1/29

Conclusions	
 and	
 future	
 work	

•  First	
 analy8cal	
 model	
 of	
 HTM	

–  focus	
 on	
 capacity,	
 conflicts	
 and	
 fallback	

– based	
 on	
 empirical	
 valida8on	
 of	
 hypothesized	

system	
 behavior	

•  Work	
 ahead:	

– Valida8on	
 with	
 complex	
 benchmarks	
 (STAMP)	
 and	

larger	
 parallel	
 machines	

– Approximate/more	
 scalable	
 analy8cal	
 model	
 of	

conten8on	

– Modelling	
 IBM’s	
 POWER8	

•  scalability	
 analysis	
 up	
 to	
 1000	
 cores!	

Q&A	

