Towards White-Box Modeling of
Hardware Transactional Memory
Systems

Daniel Castro!, Diego Didona?, Paolo Romano!

ILisbon University & INESC-ID, Portugal
2EPFL, Switzerland

Roadmap

Motivation: Paolo’s HTM Hype Cycle
Goals, Approach, Challenges
Related work

Reverse engineering Intel’s TSX

A white-box model of TSX:

— concurrency control
— capacity
Validation

Paolo’

HTM will fix

STM’s performance

HTM turns
mainstream: * DBMS indexes
TSX, P8 * auto-tuning

I HTM can shine!

* security

[
" : : * exploiting advanced
.g | ! TM features (e.g., P8
fg : : [EuroSys16])
S Boom of TM: |, : :
S | focus on STM | _
i | | |
Multicore : : ,:/9/ !
luti '
hobonsel - IVIAYKE (RRIVFS RERFCRIMIANEE
I [
Conception | MI@IRE PRERICTAELE
[I5CA93] : [Enis wWerk]|
: I. DT MIVIT I ;
. . 2 : >
Innovation : :Dnef?akt(e)(]; : Trough of : Slope of : Plateau of
Trigger ' Disillusionment ' Enlightment : Productivity

Expectations

Roadmap

Motivation: Paolo’s HTM Hype Cycle
Goals, Approach, Challenges

Related work
Reverse engineering Intel’s TSX

A white-box model of TSX:

— concurrency control
— capacity
Validation

Goals

* Improve our ability to:
1. understand, and
2. predict

performance of HTM implementations
— both current and future ones

* Current work focuses on TSX
— Work in progress on IBM’s POWERS

Approach

* White-box analytical model of HTM performance:

— focus on performance dynamics due to:
e capacity limitations
* conflicts between transactions
e impact of fallback path acquisition (global lock)

* Previous works focused on black-box models:
— poor/no human interpretability
* do not really contribute to deepen our understanding

— limited extrapolation power
e e.g., what if: capacity doubled? CPU had 1000 cores?

Challenges (1/2)

* White-box models require knowledge on
internals of target system:

— internal implementation of TSX is undisclosed

— some preliminary studies do exist and help
[PACT14, IPDPS14, MIT15]

— but some relevant details are still unclear:

 effective capacity for transactions that issue different
mixes of loads/stores

* resolution policy for transactional conflicts

Challenges (2/2)

* Tame the complexity of HTM implementations

 Models are an inherent approximation of
reality

* The art of white-box performance modelling:
— pick the “right” approximations
— make the model simple enough to be:

1. treatable and computable efficiently
2. accurate enough to be useful in practice

Roadmap

Motivation: Paolo’s HTM Hype Cycle
Goals, Approach, Challenges
Related work

Reverse engineering Intel’s TSX

A white-box model of TSX:

— concurrency control
— capacity
Validation

Related work

 Ample literature on modeling of DBMS’s
concurrency control performance:

— both white- and black-box approaches
— relevant differences:

* no capacity limitations
* no fallback path
e Several white-box models targeted STM, but:
— different concurrency control scheme
— no capacity limitations
— no fallback path

Roadmap

Motivation: Paolo’s HTM Hype Cycle
Goals, Approach, Challenges
Related work

Reverse engineering Intel’s TSX

A white-box model of TSX:

— concurrency control
— capacity
Validation

What we know about TSX

Concurrency control Capacity

* conflicts are eagerly * stores maintained in L1
— transactions that only issue

detected
— non-transactional operations sequential stores can E_"Ch'eve
: . ~90% of max L1 capacity
cause immediate abort of

conflict transactions:

— e.g., fallback path
e |oads are not

— transactions that only issue
sequential load achieve ~50%
of L3 capacity

way more than L1 & L2’s capacity

What we’d like to know about TSX

Concurrency control Capacity
« conflicts are eagerly * stores maintained in L1
detected — transact!ons that only issue
_ _ sequential stores can achieve
— non-transactional operations ~90% of max L1 capacity
cause immediate abort of — L1is private, so:
conflict transactions: - why not its whole capacity?
— e.g., fallback path e J|oads are not
e Upon a conflict between — transactions that only issue
: sequential load achieve ~50%
two or more transactions: of L3 capacity
— which one is aborted? * way more than L1 & L2’s capacity

* why not whole L3 capacity?

— what if transactions execute mixes
of loads and stores?

Conflict resolution policy in TSX

* Simple experiment:
— run two concurrently

— inject properly tuned delays to cause:
* read after write
» write after write conflicts
* write after write

e Conclusion:

— “Last requester wins” policy
— Spoiler: not the same for POWERS!

What we’d like to know about TSX

Concurrency control Capacity
« conflicts are eagerly * stores maintained in L1
detected — transact!ons that only issue
_ _ sequential stores can achieve
— non-transactional operations ~90% of max L1 capacity
cause immediate abort of — L1is private, so:
conflict transactions: « why not its whole capacity?
— e.g., fallback path e |oads are not
e Upon a conflict between — transactions that only issue
: sequential load achieve ~50%
two or more transactions: of L3 capacity
— which one is aborted? * way more than L1 & L2’s capacity

* why not whole L3 capacity?

— what if transactions execute mixes
of loads and stores?

e “Last requester wins”

Actual store capacity

Nguyen [MIT15] hypothesized the presence of some
transactional metadata in L1:

— how large is this metadata? 10% of the L1 cache?

We seek an answer by:

— simulating an L1 with the same geometry as our platform:
* 512 cache lines, 8-way associativity (Haswell Xeon V3, 4 cores)

— placing metadata in X random cache lines

— emulating a tx that issues sequential stores starting from a
random address

— reporting a capacity if we evict a metadata or a cache line
written by the transaction

Actual store capacity

 Nguyen [MIT15] hypothesized the presence of some
transactional metadata in L1:

— how large is this metadata? 10% of the L1 cache?

Simulation —_—

ssful transac

Avg. length of a succe:

Cache lines occu pied by transactional meta data

=>» ~3 lines are occupied by transactional meta-data

What we’d like to know about TSX

Concurrency control Capacity
conflicts are eagerly * stores maintainedin L1
detected — transactions that only issue
_ _ sequential stores can achieve
— n0n-transach0na| Operal'lons ~90% Of max L1 Capacity
conflict transactions: « Transactional metadata
— e.g., fallback path * loads are not
Upon a conflict between — transactions that only issue

sequential load achieve ~50%

two or more transactions: of L3 capacity
— which one is aborted? * way more than L1 & L2’s capacity
e “Last requester wins” * why not whole L3 capacity?

— what if transactions execute mixes
of loads and stores?

Capacity with load/store mixes

* Experiment:
— Tx accesses (cache aligned) addresses selected unif. at rand.
— each access is a store (resp. load) with prob. P, (resp. 1-P,,)

100 T T T
HAR Py = 100% —a—
HAR Py = 50% —e—
HAR Py = 10%
HAR Py, = 1%
80 |-
9
5
Ke}
3 60
>
‘C
®©
Q.
©
(&)
k]
2 40
Qo
©
Ko}
o
o
20 |-
0

1 = - 1 1 1 1 1
64 128 256 512 1024 2048 4096
Number of cache lines

Capacity with load/store mixes

* Key observation:

— when 50% of accesses are loads, capacity does not double
* only ¥10% increase on average

100 T T
HAR Py = 100% —a—
HAR Py = 50% —e—
HAR Py = 10%
HAR Py, = 1%
80 |-
9
5
Ke}
3 60
>
‘C
®©
Q.
©
(&)
k]
2 40
Qo
©
Ko}
o
o
20 |-
0

1 = - 1 1 1 1 1
64 128 256 512 1024 2048 4096
Number of cache lines

Capacity with load/store mixes

* Key observation:

— when 50% of accesses are loads, capacity does not double
* only ~¥10% increase on average

* Hypothesis:

1. loads can trigger evictions in L1:

e L1 eviction of written cache lines:
=>» capacity abort

e L1 eviction of read cache lines:
=» safe, metadata stored elsewhere
2. for non-minimal values of P, the effective capacity is largely
determined by evictions in L1:
* intuition: L3 is 256x larger than L1

Capacity with load/store mixes

We use, again, simulation to validate our hypothesis &
approximation. I

HAR Py, = 100% —=—
SIM Py = 100% —=—
HAR P, = 50%
SIM Py = 50%
HAR Py = 10%
| SIM Py =10% —a—
HAR Py = 1% ——~—
SIM Py = 1% —v—
HAR Py =0.1% ——
SIM Py = 0.1% ——

[or]
o

(%)

They hold for write prob.
as small as 0.1%!

0]
o

Probability of capacity abort
N
o

n
o

04 e

Consequences: o vm ee e s e e

— for modelling purposes we do not care where/how TSX stores
metadata of loaded cache lines

— models considering only L1 will have good accuracy

What we’—gi'&ge to know about TSX

Concurrency control Capacity
« conflicts are eagerly * stores maintained in L1
detected — transact_ions that only issge
_ _ sequential stores can achieve
— non-transactional operations ~90% of max L1 capacity
cause immediate abort of — Why not its whole capacity?
conflict transactions: * Transactional metadata
— e.g., fallback path * |oads are not
e Upon a conflict between — transactions that only issue
: sequential load achieve ~50% of
two or more transactions: L3 capacity
— which one is aborted? * way more than L1 & L2’s capacity
e “Last requester wins” °© why-notwholeL3-capacity?

— transactions executing mixes of loads
and stores are constrained by L1

Roadmap

Motivation: Paolo’s HTM Hype Cycle
Goals, Approach, Challenges
Related work

Reverse engineering Intel’s TSX

A white-box model of TSX:

— overview

— concurrency control
— capacity
Validation

Key parameters and assumptions

O threads running concurrently on different physical cores:
— no Hyper-threading

After B aborts, the fallback path (global lock) is activated

Key workload characteristics:

— Interleaving of transactional/non-transactional code
— Transaction length (# accesses) and duration

— Transaction data access patterns

Target KPIs:
— avg. throughput/execution time (including aborted retries)
— abort probability: contention, fallbacks, capacity

Key parameters and assumptions:
Tx/non-tx code blocks

e Threads execute either transactional or non-
transactional code block with probability P,

—— Transaction

Transaction

e Data race freedom:

Non

s

-transa

ction

(- _J
i

Non-transaction

~+

nsact——» Time

— Transactional and non-transactional code access

disjoint data

— 1 notable exception: the fallback lock

Key parameters and assumptions:
Transaction length and duration

Transactions perform, on average, L accesses, each mapping
to a different cache line

— if multiple accesses map to the same cache line, only the first is
accounted for

Duration of transactions is exponentially distributed with
mean value C

— C/L: avg. time between two memory accesses
— 1/C << hardware timer interrupt frequency

Start 91 g2 ds gL End

Time

=4
=

04

Transaction data access patterns

* Tx accesses are uniformly distributed across D
granules:

— each granule has the size of a cache line

— non-uniform access patterns can be approximated
via an “equivalent” (smaller) uniform one [TAS14]

. T h
* Each access is a store, !

resp. load, with probability
P\, resp. 1-P, —

Modelling execution of threads (1/3)

* At any point in time, the state of the system can be
described as follows:

— tx': #fthreads running transactions withd [1,B] retries left

— nt: #threads executing non-transactional code
— fb: #threads in the fallback path

whereXZ_, ;tx +nt+fb=0 //tot thread count
* We encode the system’s state via tuples of the form:
<tx8, ..., tx,... , tx*,nt, fb>
* Each state:

— has a different abort probability
— produces a different throughput

Modelling execution of threads (2/3)

e ...and model execution via a Markov Chain:

8:1:(1-pa) Py

 whose transition rates depend on source states’:
* throughput
e abort probability
* fallback path activation probability

Modelling execution of threads (3/3)

* The use of a Markov Chain (MC) allows for
simplifying modelling:

— target KPIS can be computed on a state-by-state basis:

* thus focusing on a simpler case

— next, the stationary distribution, s, of the MC can be
computed:
e probability to be in each state of the MC
— finally, the KPIs for the whole system are obtained as
the average of the KPIs in each state weighted by the
probability of each state, e.g.:

Pa = 2565 TsPa,s

Roadmap

Motivation: Paolo’s HTM Hype Cycle
Goals, Approach, Challenges
Related work

Reverse engineering Intel’s TSX

A white-box model of TSX:

— overview

— concurrency control
— capacity
Validation

Modelling transaction conflicts

* Avg. frequency of conflicts for a tx at its i-th

operation:

H (i) = (6" -1)

l

4

D

(1-(1-P,)

Every W=C/L time units,

the remaining 6-1
transactional threads
access an item

* Probability of reaching operation i, Pg(i), is
computed recursively:

Pr(i) = Pr(i — 1)(1 — e 207D/ Ly

Modelling aborts due to fallbacks

* When a transactions with 1 retry left aborts
due to a conflict, it will cause the abort of any
other concurrent transaction

 We model this by:

— first computing abort probability w/o fallback-

H"(i) = H (i) + dupa. H(q)

— computing again the abe*

Roadmap

Motivation: Paolo’s HTM Hype Cycle
Goals, Approach, Challenges
Related work

Reverse engineering Intel’s TSX

A white-box model of TSX:

— overview

— concurrency control
— capacity

Validation

Modelling Capacity Aborts
Write-only workloads (P,,=1)

Modelled as a ball into bins problem:
— (-associative cache with B sets = B bins, each with capacity C

Compute probability that at least a bin is full after i balls.

Different sequences of | ball throws w/o causing any bin
overflows (up to C ball in each bin):

max(0, I- B(C-1)), no. ways in which we are left with:
distribute balls to we can choose x - |-xC balls
bins in round-robin bins out of B - B-x bins, not filled

B,CI — X C B-x,C-1,1-xC

X=min, y=0

éLaII balls hit the same no. ways in which we can
in, until this is full throw Cx balls filling x bins

Modelling Capacity Aborts
Write-only workloads (P,,=1)

Cast to a ball into bins problems:
— (-associative cache with B sets == B bins, each with capacity C

Compute probability that at least a bin is full after i balls.

Different sequences of | ball throws w/o causing any bin
overflows (up to C ball in each bin):

B,C,I — X C B-x,C-1,1-xC

X=min¢ y=0
Probability that at least one bin overflows after | balls :

Npc1

Plc<I)=1- B

Modelling Capacity Aborts
Mixed read/write workloads

* As already discussed, models can focus only
on L1 dynamics for P, > 0.1%

e But the exact computation is more complex
with read/write “balls”:

— both mathematically and computationally
— We propose ah approximate approach

Details in the paper

Roadmap

Motivation: Paolo’s HTM Hype Cycle
Goals, Approach, Challenges
Related work

Reverse engineering Intel’s TSX

A white-box model of TSX:

— overview
— concurrency control
— capacity
Validation

Validation

Based on Xeon E3-1275 v3 running at 3.5GhZ
(Haswell), 4 physical cores

Capacity:

— conflict free workload, single threaded

Conflicts:
— short transactions, not to cause capacity except.

In both tests we generate uniformly
distributed accesses over data sets of size D

Probability of Capacity Aborts

100 I I
HAR Py, = 100%
ANA Py, = 100%
80 I HARPy=50%
ANA Py, = 50%
HAR Py, = 10%
60 ANA Py, = 10%

HAR Py, = 1%
ANA Py, = 1%

40

20

Probability of capacity abort (%)

50 100 150 200 250 300 350 400 450 500

Number of cache lines

Predicted

rJ

Conflicts (and fallback)

Throughput (Mtx/s)
a3
-
[]
o
[]
ot
l":-
0 2 4 B 8
Real

MAPE = 8.12%, R = 0.9989.
No. threads = {1,2,3,4}
Retry budget = {2,4,6}
accesses in a tx ={2,5,10,20}
Data set size = {512, 2048, 8192, 32768}
Prob. that an access is a write ={0.5, 1.0}

Predicted

Probability of abort

80%]
L]
L]
E0%
™ L]
40%
[]
[™ .e
0% |
LN
| N]
Pl
0%
0% 20% 40% 60% 80%
Real

MAE =4.94%, R = 0.9923.

Conclusions and future work

* First analytical model of HTM
— focus on capacity, conflicts and fallback

— based on empirical validation of hypothesized
system behavior

e Work ahead:

— Validation with complex benchmarks (STAMP) and
larger parallel machines

— Approximate/more scalable analytical model of
contention

— Modelling IBM’s POWERS

* scalability analysis up to 1000 cores!

Q&A

