
Towards	 White-‐Box	 Modeling	 of	
Hardware	 Transac8onal	 Memory	

Systems	 	
	

Daniel	 Castro1,	 Diego	 Didona2,	 Paolo	 Romano1	
	

1Lisbon	 University	 &	 INESC-‐ID,	 Portugal	
2EPFL,	 Switzerland	

Roadmap	

•  Mo8va8on:	 Paolo’s	 HTM	 Hype	 Cycle	
•  Goals,	 Approach,	 Challenges	
•  Related	 work	
•  Reverse	 engineering	 Intel’s	 TSX	
•  A	 white-‐box	 model	 of	 TSX:	
– concurrency	 control	
– capacity	

•  Valida8on	

Paolo’s	 HTM	 Hype	 Cycle	

Innova8on	
Trigger	

Ex
pe

ct
a(

on
s	

Peak	 of	
Inflated	

Expecta8ons	

Trough	 of	
Disillusionment	

Slope	 of	 	
Enlightment	

Concep8on	
[ISCA93]	

Mul8core	
revolu8on	
~2002	

Boom	 of	 TM:	
focus	 on	 STM	

HTM	 will	 fix	
STM’s	 performance	

HTM	 turns	 	
mainstream:	

TSX,	 P8	

HTM	 is	 not	 the	
silver	 bullet,	 e.g.:	

STAMP	

Plateau	 of	
Produc8vity	

HTM	 can	 shine!	 	
•  DBMS	 indexes	
•  auto-‐tuning	
•  security	
•  exploi8ng	 advanced	

TM	 features	 (e.g.,	 P8	
[EuroSys16])	

Roadmap	

•  Mo8va8on:	 Paolo’s	 HTM	 Hype	 Cycle	
•  Goals,	 Approach,	 Challenges	
•  Related	 work	
•  Reverse	 engineering	 Intel’s	 TSX	
•  A	 white-‐box	 model	 of	 TSX:	
– concurrency	 control	
– capacity	

•  Valida8on	

Goals	

•  Improve	 our	 ability	 to:	
1.  understand,	 and	
2.  predict	
performance	 of	 HTM	 implementa8ons	
– both	 current	 and	 future	 ones	

•  Current	 work	 focuses	 on	 TSX	
– Work	 in	 progress	 on	 IBM’s	 POWER8	 	

Approach	

•  White-‐box	 analy8cal	 model	 of	 HTM	 performance:	
–  focus	 on	 performance	 dynamics	 due	 to:	

•  capacity	 limita8ons	
•  conflicts	 between	 transac8ons	
•  impact	 of	 fallback	 path	 acquisi8on	 (global	 lock)	

•  Previous	 works	 focused	 on	 black-‐box	 models:	
–  poor/no	 human	 interpretability	

•  do	 not	 really	 contribute	 to	 deepen	 our	 understanding	
–  limited	 extrapola8on	 power	

•  e.g.,	 what	 if:	 capacity	 doubled?	 CPU	 had	 1000	 cores?	

Challenges	 (1/2)	

•  White-‐box	 models	 require	 knowledge	 on	
internals	 of	 target	 system:	
–  internal	 implementa8on	 of	 TSX	 is	 undisclosed	
– some	 preliminary	 studies	 do	 exist	 and	 help	
[PACT14,	 IPDPS14,	 MIT15]	

– but	 some	 relevant	 details	 are	 s8ll	 unclear:	
•  effec8ve	 capacity	 for	 transac8ons	 that	 issue	 different	
mixes	 of	 loads/stores	 	
•  resolu8on	 policy	 for	 transac8onal	 conflicts	

Challenges	 (2/2)	

•  Tame	 the	 complexity	 of	 HTM	 implementa8ons	
•  Models	 are	 an	 inherent	 approxima8on	 of	
reality	

•  The	 art	 of	 white-‐box	 performance	 modelling:	
– pick	 the	 “right”	 approxima8ons	
– make	 the	 model	 simple	 enough	 to	 be:	

1.  treatable	 and	 computable	 efficiently	
2.  accurate	 enough	 to	 be	 useful	 in	 prac8ce	

Roadmap	

•  Mo8va8on:	 Paolo’s	 HTM	 Hype	 Cycle	
•  Goals,	 Approach,	 Challenges	
•  Related	 work	
•  Reverse	 engineering	 Intel’s	 TSX	
•  A	 white-‐box	 model	 of	 TSX:	
– concurrency	 control	
– capacity	

•  Valida8on	

Related	 work	

•  Ample	 literature	 on	 modeling	 of	 DBMS’s	
concurrency	 control	 performance:	
–  both	 white-‐	 and	 black-‐box	 approaches	
–  relevant	 differences:	

•  no	 capacity	 limita8ons	
•  no	 fallback	 path	

•  Several	 white-‐box	 models	 targeted	 STM,	 but:	
–  different	 concurrency	 control	 scheme	
–  no	 capacity	 limita8ons	
–  no	 fallback	 path	

Roadmap	

•  Mo8va8on:	 Paolo’s	 HTM	 Hype	 Cycle	
•  Goals,	 Approach,	 Challenges	
•  Related	 work	
•  Reverse	 engineering	 Intel’s	 TSX	
•  A	 white-‐box	 model	 of	 TSX:	
– concurrency	 control	
– capacity	

•  Valida8on	

What	 we	 know	 about	 TSX	

Concurrency	 control	
•  conflicts	 are	 eagerly	

detected	
–  non-‐transac8onal	 opera8ons	

cause	 immediate	 abort	 of	
conflict	 transac8ons:	

–  e.g.,	 fallback	 path	

Capacity	
•  stores	 maintained	 in	 L1	

–  transac8ons	 that	 only	 issue	
sequen8al	 stores	 can	 achieve	
~90%	 of	 max	 L1	 capacity	

•  loads	 are	 not	
–  transac8ons	 that	 only	 issue	

sequen8al	 load	 achieve	 ~50%	
of	 L3	 capacity	
•  way	 more	 than	 L1	 &	 L2’s	 capacity	

	

What	 we’d	 like	 to	 know	 about	 TSX	

Concurrency	 control	
•  conflicts	 are	 eagerly	

detected	
–  non-‐transac8onal	 opera8ons	

cause	 immediate	 abort	 of	
conflict	 transac8ons:	

–  e.g.,	 fallback	 path	
•  Upon	 a	 conflict	 between	

two	 or	 more	 transac8ons:	
–  which	 one	 is	 aborted?	

Capacity	
•  stores	 maintained	 in	 L1	

–  transac8ons	 that	 only	 issue	
sequen8al	 stores	 can	 achieve	
~90%	 of	 max	 L1	 capacity	

–  L1	 is	 private,	 so:	
•  why	 not	 its	 whole	 capacity?	

•  loads	 are	 not	
–  transac8ons	 that	 only	 issue	

sequen8al	 load	 achieve	 ~50%	
of	 L3	 capacity	
•  way	 more	 than	 L1	 &	 L2’s	 capacity	
•  why	 not	 whole	 L3	 capacity?	

–  what	 if	 transac8ons	 execute	 mixes	
of	 loads	 and	 stores?	

	

Conflict	 resolu8on	 policy	 in	 TSX	

•  Simple	 experiment:	
–  run	 two	 concurrently	
–  inject	 properly	 tuned	 delays	 to	 cause:	
•  read	 aper	 write	
•  write	 aper	 write	 conflicts	
•  write	 aper	 write	

•  Conclusion:	
– “Last	 requester	 wins”	 policy	
– Spoiler:	 not	 the	 same	 for	 POWER8!	

What	 we’d	 like	 to	 know	 about	 TSX	

Concurrency	 control	
•  conflicts	 are	 eagerly	

detected	
–  non-‐transac8onal	 opera8ons	

cause	 immediate	 abort	 of	
conflict	 transac8ons:	

–  e.g.,	 fallback	 path	
•  Upon	 a	 conflict	 between	

two	 or	 more	 transac8ons:	
–  which	 one	 is	 aborted?	

•  “Last	 requester	 wins”	

Capacity	
•  stores	 maintained	 in	 L1	

–  transac8ons	 that	 only	 issue	
sequen8al	 stores	 can	 achieve	
~90%	 of	 max	 L1	 capacity	

–  L1	 is	 private,	 so:	
•  why	 not	 its	 whole	 capacity?	

•  loads	 are	 not	
–  transac8ons	 that	 only	 issue	

sequen8al	 load	 achieve	 ~50%	
of	 L3	 capacity	
•  way	 more	 than	 L1	 &	 L2’s	 capacity	
•  why	 not	 whole	 L3	 capacity?	

–  what	 if	 transac8ons	 execute	 mixes	
of	 loads	 and	 stores?	

	

Actual	 store	 capacity	

•  Nguyen	 [MIT15]	 hypothesized	 the	 presence	 of	 some	
transac8onal	 metadata	 in	 L1:	
–  how	 large	 is	 this	 metadata?	 10%	 of	 the	 L1	 cache?	

•  We	 seek	 an	 answer	 by:	
–  simula8ng	 an	 L1	 with	 the	 same	 geometry	 as	 our	 plaqorm:	

•  512	 cache	 lines,	 8-‐way	 associa8vity	 (Haswell	 Xeon	 V3,	 4	 cores)	
–  placing	 metadata	 in	 X	 random	 cache	 lines	
–  emula8ng	 a	 tx	 that	 issues	 sequen8al	 stores	 star8ng	 from	 a	
random	 address	

–  repor8ng	 a	 capacity	 if	 we	 evict	 a	 metadata	 or	 a	 cache	 line	
wriren	 by	 the	 transac8on	

Actual	 store	 capacity	

•  Nguyen	 [MIT15]	 hypothesized	 the	 presence	 of	 some	
transac8onal	 metadata	 in	 L1:	
–  how	 large	 is	 this	 metadata?	 10%	 of	 the	 L1	 cache?	

è	 ~3	 lines	 are	 occupied	 by	 transac8onal	 meta-‐data	

 430

 440

 450

 460

 470

 480

 490

 500

 510

 520

 0 2 4 6 8 10

Av
g.

 le
ng

th
 o

f a
 su

cc
es

sfu
l tr

an
sa

cti
on

Cache lines occupied by transactional metadata

Simulation
TSX

What	 we’d	 like	 to	 know	 about	 TSX	

Concurrency	 control	
•  conflicts	 are	 eagerly	

detected	
–  non-‐transac8onal	 opera8ons	

cause	 immediate	 abort	 of	
conflict	 transac8ons:	

–  e.g.,	 fallback	 path	
•  Upon	 a	 conflict	 between	

two	 or	 more	 transac8ons:	
–  which	 one	 is	 aborted?	

•  “Last	 requester	 wins”	

Capacity	
•  stores	 maintained	 in	 L1	

–  transac8ons	 that	 only	 issue	
sequen8al	 stores	 can	 achieve	
~90%	 of	 max	 L1	 capacity	

–  Why	 not	 its	 whole	 capacity?	
•  Transac8onal	 metadata	

•  loads	 are	 not	
–  transac8ons	 that	 only	 issue	

sequen8al	 load	 achieve	 ~50%	
of	 L3	 capacity	
•  way	 more	 than	 L1	 &	 L2’s	 capacity	
•  why	 not	 whole	 L3	 capacity?	

–  what	 if	 transac8ons	 execute	 mixes	
of	 loads	 and	 stores?	

	

Capacity	 with	 load/store	 mixes	

•  Experiment:	
–  Tx	 accesses	 (cache	 aligned)	 addresses	 selected	 unif.	 at	 rand.	
–  each	 access	 is	 a	 store	 (resp.	 load)	 with	 prob.	 PW	 (resp.	 1-‐PW)	

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096

Pr
ob

ab
ilit

y
of

 c
ap

ac
ity

 a
bo

rt
(%

)

Number of cache lines

HAR PW = 100%
HAR PW = 50%
HAR PW = 10%
HAR PW = 1%

Capacity	 with	 load/store	 mixes	

•  Key	 observa8on:	
–  when	 50%	 of	 accesses	 are	 loads,	 capacity	 does	 not	 double	

•  only	 ~10%	 increase	 on	 average	

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096

Pr
ob

ab
ilit

y
of

 c
ap

ac
ity

 a
bo

rt
(%

)

Number of cache lines

HAR PW = 100%
HAR PW = 50%
HAR PW = 10%
HAR PW = 1%

Capacity	 with	 load/store	 mixes	

•  Key	 observa8on:	
–  when	 50%	 of	 accesses	 are	 loads,	 capacity	 does	 not	 double	

•  only	 ~10%	 increase	 on	 average	
	

•  Hypothesis:	
1.  loads	 can	 trigger	 evic8ons	 in	 L1:	

•  L1	 evic8on	 of	 wriren	 cache	 lines:	
è	 capacity	 abort	

•  L1	 evic8on	 of	 read	 cache	 lines:	
è	 safe,	 metadata	 stored	 elsewhere	

2.  for	 non-‐minimal	 values	 of	 PW	 the	 effec8ve	 capacity	 is	 largely	 	
determined	 	 by	 evic8ons	 in	 L1:	
•  intui8on:	 L3	 is	 256x	 larger	 than	 L1	

	

Capacity	 with	 load/store	 mixes	
•  We	 use,	 again,	 simula8on	 to	 validate	 our	 hypothesis	 &	

approxima8on.	
	
	
•  They	 hold	 for	 write	 prob.	

as	 small	 as	 0.1%!	
	
	

•  Consequences:	
–  for	 modelling	 purposes	 we	 do	 not	 care	 where/how	 TSX	 stores	
metadata	 of	 loaded	 cache	 lines	

–  models	 considering	 only	 L1	 will	 have	 good	 accuracy	
	

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096

Pr
ob

ab
ilit

y
of

 c
ap

ac
ity

 a
bo

rt
(%

)

Number of cache lines

HAR PW = 100%
SIM PW = 100%
HAR PW = 50%
SIM PW = 50%

HAR PW = 10%
SIM PW = 10%
HAR PW = 1%
SIM PW = 1%

HAR PW = 0.1%
SIM PW = 0.1%

What	 we’d	 like	 to	 know	 about	 TSX	

Concurrency	 control	
•  conflicts	 are	 eagerly	

detected	
–  non-‐transac8onal	 opera8ons	

cause	 immediate	 abort	 of	
conflict	 transac8ons:	

–  e.g.,	 fallback	 path	
•  Upon	 a	 conflict	 between	

two	 or	 more	 transac8ons:	
–  which	 one	 is	 aborted?	

•  “Last	 requester	 wins”	

Capacity	
•  stores	 maintained	 in	 L1	

–  transac8ons	 that	 only	 issue	
sequen8al	 stores	 can	 achieve	
~90%	 of	 max	 L1	 capacity	

–  Why	 not	 its	 whole	 capacity?	
•  Transac8onal	 metadata	

•  loads	 are	 not	
–  transac8ons	 that	 only	 issue	

sequen8al	 load	 achieve	 ~50%	 of	
L3	 capacity	
•  way	 more	 than	 L1	 &	 L2’s	 capacity	
•  why	 not	 whole	 L3	 capacity?	

–  transac8ons	 execu8ng	 mixes	 of	 loads	
and	 stores	 are	 constrained	 by	 L1	

	

need	

Roadmap	

•  Mo8va8on:	 Paolo’s	 HTM	 Hype	 Cycle	
•  Goals,	 Approach,	 Challenges	
•  Related	 work	
•  Reverse	 engineering	 Intel’s	 TSX	
•  A	 white-‐box	 model	 of	 TSX:	
–  overview	
–  concurrency	 control	
–  capacity	

•  Valida8on	

Key	 parameters	 and	 assump8ons	

•  θ	 threads	 running	 concurrently	 on	 different	 physical	 cores:	
–  no	 Hyper-‐threading	

•  Aper	 B	 aborts,	 the	 fallback	 path	 (global	 lock)	 is	 ac8vated	

•  Key	 workload	 characteris8cs:	
–  Interleaving	 of	 transac8onal/non-‐transac8onal	 code	
–  Transac8on	 length	 (#	 accesses)	 and	 dura8on	
–  Transac8on	 data	 access	 parerns	

•  Target	 KPIs:	
–  avg.	 throughput/execu8on	 8me	 (including	 aborted	 retries)	
–  abort	 probability:	 conten8on,	 fallbacks,	 capacity	

Key	 parameters	 and	 assump8ons:	
Tx/non-‐tx	 code	 blocks	

•  Threads	 execute	 either	 transac8onal	 or	 non-‐
transac8onal	 code	 block	 with	 probability	 Pt	

•  Data	 race	 freedom:	 	
– Transac8onal	 and	 non-‐transac8onal	 code	 access	
disjoint	 data	

– 1	 notable	 excep8on:	 the	 fallback	 lock	

Workload assumptions

A thread may start:
Non-Transactional Code Blocks (NTCBs);

With probability 1 ≠ pt

Transactions Code Blocks (TCBs);
With probability pt

Non-transactions do not conflict with transactions;

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 15 / 32

Workload assumptions
Transaction length:

TCBs access a number of granules L and have a duration C :
Assume L known and fixed;

Assume C a known average value, exponentially distributed;

Each W = C/L time interval transactions access a granule;

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 16 / 32

Key	 parameters	 and	 assump8ons:	
Transac8on	 length	 and	 dura8on	

•  Transac8ons	 perform,	 on	 average,	 L	 accesses,	 each	 mapping	
to	 a	 different	 cache	 line	
–  if	 mul8ple	 accesses	 map	 to	 the	 same	 cache	 line,	 only	 the	 first	 is	

accounted	 for	

•  Dura8on	 of	 transac8ons	 is	 exponen8ally	 distributed	 with	
mean	 value	 C	
–  C/L:	 avg.	 8me	 between	 two	 memory	 accesses	
–  1/C	 <<	 hardware	 8mer	 interrupt	 frequency	

Transac8on	 data	 access	 parerns	

•  Tx	 accesses	 are	 uniformly	 distributed	 across	 D	
granules:	
– each	 granule	 has	 the	 size	 of	 a	 cache	 line	
– non-‐uniform	 access	 parerns	 can	 be	 approximated	
via	 an	 “equivalent”	 (smaller)	 uniform	 one	 [TAS14]	

•  Each	 access	 is	 a	 store,	 	
resp.	 load,	 with	 probability	 	
PW,	 resp.	 1-‐PW	

Workload assumptions

Access to shared resources

Assume transactions access a granule
pool of size of fixed size D;

Accesses are uniformly distributed,
every granule is equiprobable;

Larger D results in smaller contention:
D æ Œ then there is no contention

Related work on modeling non-uniform
accesses [Didona, 2014]

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 18 / 32

Modelling	 execu8on	 of	 threads	 (1/3)	

•  At	 any	 point	 in	 8me,	 the	 state	 of	 the	 system	 can	 be	
described	 as	 follows:	
–  txi:	 #threads	 running	 transac8ons	 with	 i	 	 	 	 [1,B]	 retries	 lep	
–  nt:	 #threads	 execu8ng	 non-‐transac8onal	 code	
– ':	 #threads	 in	 the	 fallback	 path	
where	 Σi=1..B	 txi	 +	 nt	 +	 z	 =	 θ	 	 	 //	 tot	 thread	 count	

•  We	 encode	 the	 system’s	 state	 via	 tuples	 of	 the	 	 form:	
	 <txB,	 …	 ,txi	 ,…	 ,tx1	 ,nt	 ,	 '>	

•  Each	 state:	
–  has	 a	 different	 abort	 probability	
–  produces	 a	 different	 throughput	

∈

Modelling	 execu8on	 of	 threads	 (2/3)	

•  …and	 model	 execu8on	 via	 a	 Markov	 Chain:	

•  whose	 transi8on	 rates	 depend	 on	 source	 states’:	
•  throughput	 	
•  abort	 probability	
•  fallback	 path	 ac8va8on	 probability	

Modelling	 execu8on	 of	 threads	 (3/3)	

•  The	 use	 of	 a	 Markov	 Chain	 (MC)	 allows	 for	
simplifying	 modelling:	
–  target	 KPIS	 can	 be	 computed	 on	 a	 state-‐by-‐state	 basis:	

•  thus	 focusing	 on	 a	 simpler	 case	 	

–  next,	 the	 sta8onary	 distribu8on,	 	 	 	 	 ,	 of	 the	 MC	 can	 be	
computed:	 	
•  probability	 to	 be	 in	 each	 state	 of	 the	 MC	

–  finally,	 the	 KPIs	 for	 the	 whole	 system	 are	 obtained	 as	
the	 average	 of	 the	 KPIs	 in	 each	 state	 weighted	 by	 the	
probability	 of	 each	 state,	 e.g.:	

Modeling the system

Stationary distribution of this Markov-chain, fįs :
probability of being in each state;

Probability of abort and throughput are computed as the weighted
average for all states;

Probability of abort: pa =
q

sœS fįspa,s

States with Ø 1 fall-back transactions: pa,s = 1;
Normalize pa to not include these states;

Throughput: X =
q

sœS fįsXs

States with Ø 1 fall-back transactions: Xs = µf
Other states: Xs = ◊tµt

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 20 / 32

Modeling the system

Stationary distribution of this Markov-chain, fįs :
probability of being in each state;

Probability of abort and throughput are computed as the weighted
average for all states;

Probability of abort: pa =
q

sœS fįspa,s

States with Ø 1 fall-back transactions: pa,s = 1;
Normalize pa to not include these states;

Throughput: X =
q

sœS fįsXs

States with Ø 1 fall-back transactions: Xs = µf
Other states: Xs = ◊tµt

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 20 / 32

Roadmap	

•  Mo8va8on:	 Paolo’s	 HTM	 Hype	 Cycle	
•  Goals,	 Approach,	 Challenges	
•  Related	 work	
•  Reverse	 engineering	 Intel’s	 TSX	
•  A	 white-‐box	 model	 of	 TSX:	
–  overview	
–  concurrency	 control	
–  capacity	

•  Valida8on	

Modelling	 transac8on	 conflicts	

•  Avg.	 frequency	 of	 conflicts	 for	 a	 tx	 at	 its	 i-‐th	
opera8on:	

	
•  Probability	 of	 reaching	 opera8on	 i,	 PR(i),	 is	
computed	 recursively:	

Every	 W=C/L	 8me	 units,	
the	 remaining	 θt-‐1	

transac8onal	 threads	
access	 an	 item	

This	 access	 must	 target	
one	 of	 the	 i	 items	

already	 accessed	 by	 the	
transac8on	

To	 generate	 a	 conflict,	 	 at	
least	 one	 of	 the	 two	

accesses	 must	 be	 a	 write	

H (i) = (θ
t −1)
W

i
D
(1− (1−PW)

2

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC)

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.

5 2017/1/29

Modelling	 aborts	 due	 to	 fallbacks	

•  When	 a	 transac8ons	 with	 1	 retry	 lep	 aborts	
due	 to	 a	 conflict,	 it	 will	 cause	 the	 abort	 of	 any	
other	 concurrent	 transac8on	

•  We	 model	 this	 by:	
– first	 compu8ng	 abort	 probability	 w/o	 fallbacks	
– correc8ng	 the	 frequency	 of	 conflicts:	

– compu8ng	 again	 the	 abort	 probability	

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC)

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.

5 2017/1/29

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC)

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.

5 2017/1/29

Roadmap	

•  Mo8va8on:	 Paolo’s	 HTM	 Hype	 Cycle	
•  Goals,	 Approach,	 Challenges	
•  Related	 work	
•  Reverse	 engineering	 Intel’s	 TSX	
•  A	 white-‐box	 model	 of	 TSX:	
–  overview	
–  concurrency	 control	
–  capacity	

•  Valida8on	

Modelling	 Capacity	 Aborts	
Write-‐only	 workloads	 (PW=1)	

•  Modelled	 as	 a	 ball	 into	 bins	 problem:	
–  C-‐associa8ve	 cache	 with	 B	 sets	 	 è	 	 B	 bins,	 each	 with	 capacity	 C	

•  Compute	 probability	 that	 at	 least	 a	 bin	 is	 full	 aper	 i	 balls.	 	
•  Different	 sequences	 of	 I	 ball	 throws	 w/o	 causing	 any	 bin	

overflows	 (up	 to	 C	 ball	 in	 each	 bin):	

Capacity exceptions

Cache can be seen has a set of bins with a given capacity:
B bins;
Each bin has capacity C ;

Reduce the problem of computing probability of capacity exception in
TSX after i accesses to the problem of computing probability that at
least one bin is full after launching i balls.

Number of states reachable after throwing i balls such that no bin
exceeds its capacities, i.e., valid states:

NB,C,I =
maxcÿ

x=minc

3
B
x

4 x-1Ÿ

y=0

3
I-yC
C

4
◊ NB-x,C-1,I-xC

maxc is the maximum full bins, i.e.,
% I

C
&
;

minc is the minimum full bins, i.e., max(0, B ◊ (C ≠ 1));

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 23 / 32

max(0,	 I-‐	 B(C-‐1)),	
distribute	 balls	 to	
bins	 in	 round-‐robin	

	 	 	 	 	 	 all	 balls	 hit	 the	 same	
bin,	 un8l	 this	 is	 full	

I
C
!

"!
#

$#

no.	 ways	 in	 which	 	
we	 can	 choose	 x	
bins	 out	 of	 B	

no.	 ways	 in	 which	 we	 can	
throw	 Cx	 balls	 filling	 x	 bins	

we	 are	 lep	 with:	
-‐	 I-‐xC	 balls	
-‐	 B-‐x	 bins,	 not	 filled	

Modelling	 Capacity	 Aborts	
Write-‐only	 workloads	 (PW=1)	

•  Cast	 to	 a	 ball	 into	 bins	 problems:	
–  C-‐associa8ve	 cache	 with	 B	 sets	 =è	 B	 bins,	 each	 with	 capacity	 C	

•  Compute	 probability	 that	 at	 least	 a	 bin	 is	 full	 aper	 i	 balls.	 	
•  Different	 sequences	 of	 I	 ball	 throws	 w/o	 causing	 any	 bin	

overflows	 (up	 to	 C	 ball	 in	 each	 bin):	

•  Probability	 that	 at	 least	 one	 bin	 overflows	 aper	 I	 balls	 :	

Capacity exceptions

Cache can be seen has a set of bins with a given capacity:
B bins;
Each bin has capacity C ;

Reduce the problem of computing probability of capacity exception in
TSX after i accesses to the problem of computing probability that at
least one bin is full after launching i balls.

Number of states reachable after throwing i balls such that no bin
exceeds its capacities, i.e., valid states:

NB,C,I =
maxcÿ

x=minc

3
B
x

4 x-1Ÿ

y=0

3
I-yC
C

4
◊ NB-x,C-1,I-xC

maxc is the maximum full bins, i.e.,
% I

C
&
;

minc is the minimum full bins, i.e., max(0, B ◊ (C ≠ 1));

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 23 / 32

The throughput of the system is defined as the the rate at which
any thread in the system completes a code block (NTCB or TCB).
It is computed as the weighted average of the system being in a
state si times the throughput in si. On its turn, the throughput in si
is the sum of the rates corresponding to the completion of a NTCB
or the commit of a TCB. We refer to the values of µ0

t computed in
state s as µ0

t,s.

X =
X

s(ti,ft=0,nt)2S

~⇡s(ti µ
0
t,s+nt µn)+

X

s(ti,ft�1,nt)2S

~⇡s(nt µn+µf)

(9)

We note that in a state s in which there is at least one transaction
in the fall-back path, this equation captures the fact that there is
only one transaction contributing to the throughput, by committing
with a rate µf =

1
C

. In a state s in which ft = 0, instead, the
ti hardware transactions all contribute to the throughput of the
system, with a rate tiµt,s.

To obtain the response time of a transaction, we exploit Little’s
law [28]. We first express X as the product of the number of active
threads ✓ and the inverse of the average response time of a code
block, whether transactional or not, R⇤. Once we obtain R⇤ we
note that it corresponds to a weighted average of the response
time of a transactional code block R⇤

t and of a non-transactional
code block R⇤

n. Because the system is stable, the probability that a
successfully executed code block is (non) transactional corresponds
to the probability that a (non) transactional code block is started.
Hence, R⇤

= ptR
⇤
t + (1 � pt)R

⇤
n. Because R⇤

n is equal to Cn

and it is given as input to the model, we can solve the equation and
obtain R⇤

t .
The average abort probability PA is computed as the weighted

average of the abort probability values obtained in each state s,
noted p0a,s. Because a transaction cannot abort when running in the
fall-back path, we do not consider the states in which ft > 0:
PA =

P
s(i,f=0,n)2S ~⇡sp

0
a,s.

4.4 Modelling capacity aborts
In this section we discuss how the model presented so far can be
extended, in a modular way, with an additional model aimed solely
at predicting the probability, noted PC(i), that a transaction incurs
a capacity abort when it issues its i-th operation.

The integration of these two models is indeed straightforward
as it suffices to observe that the the probability to reach operation
i when both aborts due to conflicts and capacity exceptions are
possible, noted P 00

R(i), can be expressed as:

P 00
R(i) = PR(i)(1� PC(i)) (10)

Let us now discuss how to derive PC(i). In the light of the
findings reported in Section 3.2, our model assumes that a capacity
abort can only be triggered by the eviction from the of a cache
line that was written by a transaction. To compute the probability
that a transactions experiences a capacity abort at its i-th access
we compute the probability that two events jointly happen: i) the
corresponding granule is stored in a full set of the L1 cache, and ii)
the cache line selected for eviction corresponds to a written granule.

We cast the problem of finding this probability to a variation of
the balls-into-bins problem. In our settings, a ball is an accessed
granule, the bins (B) are the sets of the cache, and the capacity of
each bin (C) is the associativity of the cache.

Each memory access performed by a transaction is a ball thrown
at a bin chosen uniformly at random. The variation with respect
to the classic bin-into-balls-problem is two-fold: i) a ball can be
a write ball (with probabilityPW) or a read ball (with probability
1 � PW); ii) if a bin is full, a read ball can be removed from it (if
selected by the eviction policy) to make room for another ball.

Let us start by considering the simpler case in which only write
accesses are performed, i.e., only write balls exist. We define a
valid sequence of length I , a sequence of I ball throws such that
no bin overflows, i.e., no bin receives more than C balls. The total
number of possible sequences of length I with B bins is BI . These
sequences also include invalid ones, i.e., sequences in which bins
can have been assigned more than C balls. We note NB,C,I the
number of valid sequences after I balls have been thrown. Then,
the probability that at least one bin experiences an overflow after
throwing I balls, noted P (c I) is:

P (c I) = 1� NB,C,I

BI
(11)

We compute NB,C,I in the following way. Assume that exactly
x bins have been filled after I balls are thrown. The number of
combinations of balls-to-bins allocations is given by the product of
i) the number of ways in which the x bins can be filled with xC
balls and ii) the number, ⌫, of ways in which the the remaining
I � xC balls can be assigned to the remaining B � x bins without
fully filling them. It follows that ⌫ can be computed as NB-x,C-1,I-xC,
i.e., the number of ways in which the remaining I � xC balls can
be thrown in B � x bins in such a way that, at most, every bin is
filled with C � 1 balls.

The minimum value for x is the number of bins that are filled
if balls are assigned to bins in a round-robin fashion: minc =

max(0, I � B(C � 1)). The maximum value for x is the number
of bins that get filled if the balls are thrown to the same bin until it
gets full: maxc = bI/Bc. These x bins can be chosen out of the
total B possible in

�
B
x

�
ways. Finally, the number of ways in which

Cx balls can be thrown in x bins in such a way that all the x bins
are filled is

Qx-1
y=0

�I-yC
C

�
. The resulting equation for NB,C,I is then

NB,C,I =

maxcX

x=minc

NB-x,C-1,I-xC

B

x

!
x-1Y

y=0

I-yC
C

!
(12)

We now describe how we extend this model to take into account
that the capacity abort probability also varies with the probability
of write, PW . In this case, the number of valid sequences of a
given length I is larger than for the case of PW = 1, since if a
full bin contains at least a read ball b, it can still accommodate
an additional (read/write) ball, provided that b is selected by the
eviction policy. Given the combinatorial nature of the problem,
the number of scenarios to be accounted for in order to derive an
exact probabilistic solution increases dramatically for the case of
PW 6= 1, along with the complexity and computational cost of the
resulting model.

We propose therefore an approximate solution technique that is
based on the following approach. Let us introduce the notations: i)
P (c IPW

), to refer to the probability of having a capacity abort
upon during any of the first I accesses of a transaction that executes
writes with probability PW ; ii) P (c = IPW ^ ¬c < (I � 1)

PW
),

to refer to the probability of having a capacity abort exactly at
the I-th access and of not incurring capacity aborts during the
previous I-1 operations, where each of the I operations is a write
with probability PW .

We start by expressing P (c = IPW ^ ¬c < (I � 1)

PW
) as:

P (c = IPW |¬c < I � 1

PW
)P (¬c < (I � 1)

PW
) (13)

Next we observe that the probability of having a capacity ex-
ception at operation I is not affected by whether this operation is a
read or write , but only by whether the corresponding ball I hits a
full bin and causes the “eviction” of a write ball. Hence:

P (c = IPW |¬c < (I � 1)

PW
) = P (c = I|¬c < (I � 1)

PW
)

6 2017/1/29

Modelling	 Capacity	 Aborts	
Mixed	 read/write	 workloads	

•  As	 already	 discussed,	 models	 can	 focus	 only	
on	 L1	 dynamics	 for	 Pw	 >	 0.1%	

•  But	 the	 exact	 computa8on	 is	 more	 complex	
with	 read/write	 “balls”:	
– both	 mathema8cally	 and	 computa8onally	
– we	 propose	 an	 approximate	 approach	

Roadmap	

•  Mo8va8on:	 Paolo’s	 HTM	 Hype	 Cycle	
•  Goals,	 Approach,	 Challenges	
•  Related	 work	
•  Reverse	 engineering	 Intel’s	 TSX	
•  A	 white-‐box	 model	 of	 TSX:	
–  overview	
–  concurrency	 control	
–  capacity	

•  Valida8on	

Valida8on	

•  Based	 on	 Xeon	 E3-‐1275	 v3	 running	 at	 3.5GhZ	
(Haswell),	 4	 physical	 cores	

•  Capacity:	
– conflict	 free	 workload,	 single	 threaded	

•  Conflicts:	
– short	 transac8ons,	 not	 to	 cause	 capacity	 except.	

•  In	 both	 tests	 we	 generate	 uniformly	
distributed	 accesses	 over	 data	 sets	 of	 size	 D	 	
	

Probability	 of	 Capacity	 Aborts	

Next, we introduce the following approximation:

P (c = I|¬c < (I � 1)

PW
) ⇡ P (c = I|¬c < (I � 1))PW

namely, we approximate the conditioned probability of having a
capacity after I read/write accesses with the conditioned probability
of having a capacity after I write accesses scaled down by a factor
PW . The latter scaling factor reflects the fact that P (c = I|¬c <
I � 1) is computed assuming that all the full bins after I-1 balls
contain exclusively write balls. Conversely, if transactions issue
write operations with probability PW , on average the full bins after
I � 1 throws will contain only a fraction of write ball equal to
PWC over a total of C balls. This is only an approximation as
the expected number of full bins after I balls when PW < 1 is
smaller than if PW = 1. In fact, if writes are rare (small PW),
one can throw in a single bin a number of balls that largely exceed
the bin’s capacity; when PW = 1, conversely the min number of
full bins is strictly bounded by max(0, I �B(C � 1)) . As we will
show in Section 5, this approximation yields good accuracy for PW

values larger than 1%, which, as discussed in Section 3.2, is also a
necessary condition for modelling accurately the cache dynamics
by modelling solely the L1 dynamics.

P (c = I|¬c < I � 1) can be computed by expressing it
as (P (c I) � P (c I � 1))/(1 � P (c < I � 1)) and
exploiting Eq. 11, using the definition of conditioned probability.
P (¬c < (I � 1)

PW
), in Eq. 13, can be expressed as:

P (¬c < (I�1)

PW
) = 1�

I�1X

J=1

P (c = JPW ^¬c < (J �1)

PW
)

and can be computed recursively setting

P (c = 1

PW ^ ¬c < 0

PW
) = 1

.
Finally, P (c IPW

) can simply be expressed as the sum of the
probabilities of having a capacity abort exactly at operation J , and
not earlier, for all J < I :

P (c IPW
) =

IX

J=0

P (c = JPW ^ ¬c < (J � 1)

PW
)

5. Validation
This section reports the results of a validation study that compares
the KPIs predicted by the model presented in the previous sections
with those achieved when executing on our target experimental
platform (see Section 3).

We start by validating the accuracy of our model of capacity
aborts, since it is a building block on which the overall perfor-
mance model is built. To this end we run several experiments in
which transactions perform N distinct memory accesses with a
write probability 0.01 PW 1. We then measure the proba-
bility that a transaction incurs a capacity aborts before successfully
completing the N memory accesses. Such probability is calculated
as the ratio between the number of capacity aborts and the total
number of started transactions (excluding the ones failed because
of spurious aborts).

To control as much as possible the transaction footprints, we
need to minimize the amount of auxiliary data structures used to
generate the random access path. To this end, transactions can only
access memory addresses belonging to a large set of D candidates.
Each memory location d 2 D is pre-initialized with a random
address belonging to D. After accessing d, a transaction accesses
the granule at the address encoded in d. In this way, we generate a

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

P
ro

ba
bi

lit
y

of
 c

ap
ac

ity
 a

bo
rt

(%
)

Number of cache lines

HAR PW = 100%

ANA PW = 100%

HAR PW = 50%

ANA PW = 50%

HAR PW = 10%

ANA PW = 10%

HAR PW = 1%

ANA PW = 1%

Figure 2: Validating the analytical model (ANA) for the probability
of capacity aborts vs a real system (HAR)

random access path over the D possible addresses using minimal
auxiliary memory during the experiment.

Figure 2 reports the results of the experiments and contrasts
them with the predictions output by our analytical model of ca-
pacity aborts. The plot shows that the model is able to predict well
the probability of a capacity abort as a function of the number of
(tentatively) accessed granules and write access probability, attain-
ing a MAE of 2.12%. The highest error is incurred by the model
for PW = 0.01. This is an effect of the approximation that we
have introduced in Section 4.4 to obtain a closed form solution for
the capacity abort probability. Such approximation, in fact, works
better as PW tends to 1 and, with PW = 0 would yield to a null
probability of incurring a capacity abort, regardless of the number
of performed accesses.

We now evaluate the accuracy of the presented analytical
model as a whole. In order to stress its prediction capabilities,
we use a synthetic benchmark that generates different contention
levels and access patterns. In total, we consider a set of 380
workloads, obtained by varying the workload parameters as fol-
lows: ✓ 2 {1, 2, 3, 4}, B 2 {2, 4, 6}, L 2 {2, 5, 10, 20},
D 2 {512, 2048, 8192, 32768}, PW 2 {0.5, 1.0}.

A micro-benchmark launches ✓ concurrent threads pinned to
different physical cores, hence, not sharing private caches and other
resources. These threads start transactions that perform L accesses
uniformly at random over a predefined granule pool of size D.

The memory accesses of a transaction are performed as follows.
First, a random random value 0 g < D is generated, such
that g is different from previously generated accesses. Then, with
probability PW the transaction writes g; with probability 1 � PW

the transaction reads g. The granules fit an entire cache line and are
aligned in memory to avoid aliasing conflicts.

The CPU demand of a transaction depends on the number L
of accessed granules. For each of the considered values of L, we
measure the corresponding CPU demand C, which we provide as
input to the model.

In Figure 3 we report a scatterplot comparing the real and
predicted probability of abort and throughput. The reported results
for the real system are obtained as the average of 10000 executions,
from which we removed the first and last quartile to filter out
outliers. Presented error metrics are MAPE, MAE and the Pearson
correlation factor R. The closer R is to 1, the better is the output
prediction of the model.

The reported data confirms the high accuracy of the proposed
model in predicting both the throughput and abort probability of the
system: the MAE for the abort rate is less than 5% and the MAPE

7 2017/1/29

Conflicts	 (and	 fallback)	

•  No.	 threads	 =	 {1,2,3,4}	
•  Retry	 budget	 =	 {2,4,6}	
•  #	 accesses	 in	 a	 tx	 =	 {2,5,10,20}	
•  Data	 set	 size	 =	 {512,	 2048,	 8192,	 32768}	
•  Prob.	 that	 an	 access	 is	 a	 write	 ={0.5,	 1.0}	

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.

Acknowledgments
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via projects UID/CEC/50021/2013 and
PTDC/EEISCR/1743/2014.

8 2017/1/29

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.

Acknowledgments
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via projects UID/CEC/50021/2013 and
PTDC/EEISCR/1743/2014.

8 2017/1/29

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.

Acknowledgments
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via projects UID/CEC/50021/2013 and
PTDC/EEISCR/1743/2014.

8 2017/1/29

(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.

Acknowledgments
This work was supported by Portuguese funds through Fundação
para a Ciência e Tecnologia via projects UID/CEC/50021/2013 and
PTDC/EEISCR/1743/2014.

8 2017/1/29

Conclusions	 and	 future	 work	

•  First	 analy8cal	 model	 of	 HTM	
–  focus	 on	 capacity,	 conflicts	 and	 fallback	
– based	 on	 empirical	 valida8on	 of	 hypothesized	
system	 behavior	

•  Work	 ahead:	
– Valida8on	 with	 complex	 benchmarks	 (STAMP)	 and	
larger	 parallel	 machines	

– Approximate/more	 scalable	 analy8cal	 model	 of	
conten8on	

– Modelling	 IBM’s	 POWER8	
•  scalability	 analysis	 up	 to	 1000	 cores!	

Q&A	

