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focus	
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HTM	
  will	
  fix	
  
STM’s	
  performance	
  

HTM	
  turns	
  	
  
mainstream:	
  

TSX,	
  P8	
  

HTM	
  is	
  not	
  the	
  
silver	
  bullet,	
  e.g.:	
  

STAMP	
  

Plateau	
  of	
  
Produc8vity	
  

HTM	
  can	
  shine!	
  	
  
•  DBMS	
  indexes	
  
•  auto-­‐tuning	
  
•  security	
  
•  exploi8ng	
  advanced	
  

TM	
  features	
  (e.g.,	
  P8	
  
[EuroSys16])	
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Goals	
  

•  Improve	
  our	
  ability	
  to:	
  
1.  understand,	
  and	
  
2.  predict	
  
performance	
  of	
  HTM	
  implementa8ons	
  
– both	
  current	
  and	
  future	
  ones	
  

•  Current	
  work	
  focuses	
  on	
  TSX	
  
– Work	
  in	
  progress	
  on	
  IBM’s	
  POWER8	
  	
  



Approach	
  

•  White-­‐box	
  analy8cal	
  model	
  of	
  HTM	
  performance:	
  
–  focus	
  on	
  performance	
  dynamics	
  due	
  to:	
  

•  capacity	
  limita8ons	
  
•  conflicts	
  between	
  transac8ons	
  
•  impact	
  of	
  fallback	
  path	
  acquisi8on	
  (global	
  lock)	
  

•  Previous	
  works	
  focused	
  on	
  black-­‐box	
  models:	
  
–  poor/no	
  human	
  interpretability	
  

•  do	
  not	
  really	
  contribute	
  to	
  deepen	
  our	
  understanding	
  
–  limited	
  extrapola8on	
  power	
  

•  e.g.,	
  what	
  if:	
  capacity	
  doubled?	
  CPU	
  had	
  1000	
  cores?	
  



Challenges	
  (1/2)	
  

•  White-­‐box	
  models	
  require	
  knowledge	
  on	
  
internals	
  of	
  target	
  system:	
  
–  internal	
  implementa8on	
  of	
  TSX	
  is	
  undisclosed	
  
– some	
  preliminary	
  studies	
  do	
  exist	
  and	
  help	
  
[PACT14,	
  IPDPS14,	
  MIT15]	
  

– but	
  some	
  relevant	
  details	
  are	
  s8ll	
  unclear:	
  
•  effec8ve	
  capacity	
  for	
  transac8ons	
  that	
  issue	
  different	
  
mixes	
  of	
  loads/stores	
  	
  
•  resolu8on	
  policy	
  for	
  transac8onal	
  conflicts	
  



Challenges	
  (2/2)	
  

•  Tame	
  the	
  complexity	
  of	
  HTM	
  implementa8ons	
  
•  Models	
  are	
  an	
  inherent	
  approxima8on	
  of	
  
reality	
  

•  The	
  art	
  of	
  white-­‐box	
  performance	
  modelling:	
  
– pick	
  the	
  “right”	
  approxima8ons	
  
– make	
  the	
  model	
  simple	
  enough	
  to	
  be:	
  

1.  treatable	
  and	
  computable	
  efficiently	
  
2.  accurate	
  enough	
  to	
  be	
  useful	
  in	
  prac8ce	
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Related	
  work	
  

•  Ample	
  literature	
  on	
  modeling	
  of	
  DBMS’s	
  
concurrency	
  control	
  performance:	
  
–  both	
  white-­‐	
  and	
  black-­‐box	
  approaches	
  
–  relevant	
  differences:	
  

•  no	
  capacity	
  limita8ons	
  
•  no	
  fallback	
  path	
  

•  Several	
  white-­‐box	
  models	
  targeted	
  STM,	
  but:	
  
–  different	
  concurrency	
  control	
  scheme	
  
–  no	
  capacity	
  limita8ons	
  
–  no	
  fallback	
  path	
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What	
  we	
  know	
  about	
  TSX	
  

Concurrency	
  control	
  
•  conflicts	
  are	
  eagerly	
  

detected	
  
–  non-­‐transac8onal	
  opera8ons	
  

cause	
  immediate	
  abort	
  of	
  
conflict	
  transac8ons:	
  

–  e.g.,	
  fallback	
  path	
  

Capacity	
  
•  stores	
  maintained	
  in	
  L1	
  

–  transac8ons	
  that	
  only	
  issue	
  
sequen8al	
  stores	
  can	
  achieve	
  
~90%	
  of	
  max	
  L1	
  capacity	
  

•  loads	
  are	
  not	
  
–  transac8ons	
  that	
  only	
  issue	
  

sequen8al	
  load	
  achieve	
  ~50%	
  
of	
  L3	
  capacity	
  
•  way	
  more	
  than	
  L1	
  &	
  L2’s	
  capacity	
  

	
  



What	
  we’d	
  like	
  to	
  know	
  about	
  TSX	
  

Concurrency	
  control	
  
•  conflicts	
  are	
  eagerly	
  

detected	
  
–  non-­‐transac8onal	
  opera8ons	
  

cause	
  immediate	
  abort	
  of	
  
conflict	
  transac8ons:	
  

–  e.g.,	
  fallback	
  path	
  
•  Upon	
  a	
  conflict	
  between	
  

two	
  or	
  more	
  transac8ons:	
  
–  which	
  one	
  is	
  aborted?	
  

Capacity	
  
•  stores	
  maintained	
  in	
  L1	
  

–  transac8ons	
  that	
  only	
  issue	
  
sequen8al	
  stores	
  can	
  achieve	
  
~90%	
  of	
  max	
  L1	
  capacity	
  

–  L1	
  is	
  private,	
  so:	
  
•  why	
  not	
  its	
  whole	
  capacity?	
  

•  loads	
  are	
  not	
  
–  transac8ons	
  that	
  only	
  issue	
  

sequen8al	
  load	
  achieve	
  ~50%	
  
of	
  L3	
  capacity	
  
•  way	
  more	
  than	
  L1	
  &	
  L2’s	
  capacity	
  
•  why	
  not	
  whole	
  L3	
  capacity?	
  

–  what	
  if	
  transac8ons	
  execute	
  mixes	
  
of	
  loads	
  and	
  stores?	
  

	
  



Conflict	
  resolu8on	
  policy	
  in	
  TSX	
  

•  Simple	
  experiment:	
  
–  run	
  two	
  concurrently	
  
–  inject	
  properly	
  tuned	
  delays	
  to	
  cause:	
  
•  read	
  aper	
  write	
  
•  write	
  aper	
  write	
  conflicts	
  
•  write	
  aper	
  write	
  

•  Conclusion:	
  
– “Last	
  requester	
  wins”	
  policy	
  
– Spoiler:	
  not	
  the	
  same	
  for	
  POWER8!	
  



What	
  we’d	
  like	
  to	
  know	
  about	
  TSX	
  

Concurrency	
  control	
  
•  conflicts	
  are	
  eagerly	
  

detected	
  
–  non-­‐transac8onal	
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cause	
  immediate	
  abort	
  of	
  
conflict	
  transac8ons:	
  

–  e.g.,	
  fallback	
  path	
  
•  Upon	
  a	
  conflict	
  between	
  

two	
  or	
  more	
  transac8ons:	
  
–  which	
  one	
  is	
  aborted?	
  

•  “Last	
  requester	
  wins”	
  

Capacity	
  
•  stores	
  maintained	
  in	
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–  transac8ons	
  that	
  only	
  issue	
  
sequen8al	
  stores	
  can	
  achieve	
  
~90%	
  of	
  max	
  L1	
  capacity	
  

–  L1	
  is	
  private,	
  so:	
  
•  why	
  not	
  its	
  whole	
  capacity?	
  

•  loads	
  are	
  not	
  
–  transac8ons	
  that	
  only	
  issue	
  

sequen8al	
  load	
  achieve	
  ~50%	
  
of	
  L3	
  capacity	
  
•  way	
  more	
  than	
  L1	
  &	
  L2’s	
  capacity	
  
•  why	
  not	
  whole	
  L3	
  capacity?	
  

–  what	
  if	
  transac8ons	
  execute	
  mixes	
  
of	
  loads	
  and	
  stores?	
  

	
  



Actual	
  store	
  capacity	
  

•  Nguyen	
  [MIT15]	
  hypothesized	
  the	
  presence	
  of	
  some	
  
transac8onal	
  metadata	
  in	
  L1:	
  
–  how	
  large	
  is	
  this	
  metadata?	
  10%	
  of	
  the	
  L1	
  cache?	
  

•  We	
  seek	
  an	
  answer	
  by:	
  
–  simula8ng	
  an	
  L1	
  with	
  the	
  same	
  geometry	
  as	
  our	
  plaqorm:	
  

•  512	
  cache	
  lines,	
  8-­‐way	
  associa8vity	
  (Haswell	
  Xeon	
  V3,	
  4	
  cores)	
  
–  placing	
  metadata	
  in	
  X	
  random	
  cache	
  lines	
  
–  emula8ng	
  a	
  tx	
  that	
  issues	
  sequen8al	
  stores	
  star8ng	
  from	
  a	
  
random	
  address	
  

–  repor8ng	
  a	
  capacity	
  if	
  we	
  evict	
  a	
  metadata	
  or	
  a	
  cache	
  line	
  
wriren	
  by	
  the	
  transac8on	
  



Actual	
  store	
  capacity	
  

•  Nguyen	
  [MIT15]	
  hypothesized	
  the	
  presence	
  of	
  some	
  
transac8onal	
  metadata	
  in	
  L1:	
  
–  how	
  large	
  is	
  this	
  metadata?	
  10%	
  of	
  the	
  L1	
  cache?	
  

è	
  ~3	
  lines	
  are	
  occupied	
  by	
  transac8onal	
  meta-­‐data	
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What	
  we’d	
  like	
  to	
  know	
  about	
  TSX	
  

Concurrency	
  control	
  
•  conflicts	
  are	
  eagerly	
  

detected	
  
–  non-­‐transac8onal	
  opera8ons	
  

cause	
  immediate	
  abort	
  of	
  
conflict	
  transac8ons:	
  

–  e.g.,	
  fallback	
  path	
  
•  Upon	
  a	
  conflict	
  between	
  

two	
  or	
  more	
  transac8ons:	
  
–  which	
  one	
  is	
  aborted?	
  

•  “Last	
  requester	
  wins”	
  

Capacity	
  
•  stores	
  maintained	
  in	
  L1	
  

–  transac8ons	
  that	
  only	
  issue	
  
sequen8al	
  stores	
  can	
  achieve	
  
~90%	
  of	
  max	
  L1	
  capacity	
  

–  Why	
  not	
  its	
  whole	
  capacity?	
  
•  Transac8onal	
  metadata	
  

•  loads	
  are	
  not	
  
–  transac8ons	
  that	
  only	
  issue	
  

sequen8al	
  load	
  achieve	
  ~50%	
  
of	
  L3	
  capacity	
  
•  way	
  more	
  than	
  L1	
  &	
  L2’s	
  capacity	
  
•  why	
  not	
  whole	
  L3	
  capacity?	
  

–  what	
  if	
  transac8ons	
  execute	
  mixes	
  
of	
  loads	
  and	
  stores?	
  

	
  



Capacity	
  with	
  load/store	
  mixes	
  

•  Experiment:	
  
–  Tx	
  accesses	
  (cache	
  aligned)	
  addresses	
  selected	
  unif.	
  at	
  rand.	
  
–  each	
  access	
  is	
  a	
  store	
  (resp.	
  load)	
  with	
  prob.	
  PW	
  (resp.	
  1-­‐PW)	
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Capacity	
  with	
  load/store	
  mixes	
  

•  Key	
  observa8on:	
  
–  when	
  50%	
  of	
  accesses	
  are	
  loads,	
  capacity	
  does	
  not	
  double	
  

•  only	
  ~10%	
  increase	
  on	
  average	
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Capacity	
  with	
  load/store	
  mixes	
  

•  Key	
  observa8on:	
  
–  when	
  50%	
  of	
  accesses	
  are	
  loads,	
  capacity	
  does	
  not	
  double	
  

•  only	
  ~10%	
  increase	
  on	
  average	
  
	
  

•  Hypothesis:	
  
1.  loads	
  can	
  trigger	
  evic8ons	
  in	
  L1:	
  

•  L1	
  evic8on	
  of	
  wriren	
  cache	
  lines:	
  
è	
  capacity	
  abort	
  

•  L1	
  evic8on	
  of	
  read	
  cache	
  lines:	
  
è	
  safe,	
  metadata	
  stored	
  elsewhere	
  

2.  for	
  non-­‐minimal	
  values	
  of	
  PW	
  the	
  effec8ve	
  capacity	
  is	
  largely	
  	
  
determined	
  	
  by	
  evic8ons	
  in	
  L1:	
  
•  intui8on:	
  L3	
  is	
  256x	
  larger	
  than	
  L1	
  

	
  



Capacity	
  with	
  load/store	
  mixes	
  
•  We	
  use,	
  again,	
  simula8on	
  to	
  validate	
  our	
  hypothesis	
  &	
  

approxima8on.	
  
	
  
	
  
•  They	
  hold	
  for	
  write	
  prob.	
  

as	
  small	
  as	
  0.1%!	
  
	
  
	
  

•  Consequences:	
  
–  for	
  modelling	
  purposes	
  we	
  do	
  not	
  care	
  where/how	
  TSX	
  stores	
  
metadata	
  of	
  loaded	
  cache	
  lines	
  

–  models	
  considering	
  only	
  L1	
  will	
  have	
  good	
  accuracy	
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What	
  we’d	
  like	
  to	
  know	
  about	
  TSX	
  

Concurrency	
  control	
  
•  conflicts	
  are	
  eagerly	
  

detected	
  
–  non-­‐transac8onal	
  opera8ons	
  

cause	
  immediate	
  abort	
  of	
  
conflict	
  transac8ons:	
  

–  e.g.,	
  fallback	
  path	
  
•  Upon	
  a	
  conflict	
  between	
  

two	
  or	
  more	
  transac8ons:	
  
–  which	
  one	
  is	
  aborted?	
  

•  “Last	
  requester	
  wins”	
  

Capacity	
  
•  stores	
  maintained	
  in	
  L1	
  

–  transac8ons	
  that	
  only	
  issue	
  
sequen8al	
  stores	
  can	
  achieve	
  
~90%	
  of	
  max	
  L1	
  capacity	
  

–  Why	
  not	
  its	
  whole	
  capacity?	
  
•  Transac8onal	
  metadata	
  

•  loads	
  are	
  not	
  
–  transac8ons	
  that	
  only	
  issue	
  

sequen8al	
  load	
  achieve	
  ~50%	
  of	
  
L3	
  capacity	
  
•  way	
  more	
  than	
  L1	
  &	
  L2’s	
  capacity	
  
•  why	
  not	
  whole	
  L3	
  capacity?	
  

–  transac8ons	
  execu8ng	
  mixes	
  of	
  loads	
  
and	
  stores	
  are	
  constrained	
  by	
  L1	
  

	
  

need	
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Key	
  parameters	
  and	
  assump8ons	
  

•  θ	
  threads	
  running	
  concurrently	
  on	
  different	
  physical	
  cores:	
  
–  no	
  Hyper-­‐threading	
  

•  Aper	
  B	
  aborts,	
  the	
  fallback	
  path	
  (global	
  lock)	
  is	
  ac8vated	
  

•  Key	
  workload	
  characteris8cs:	
  
–  Interleaving	
  of	
  transac8onal/non-­‐transac8onal	
  code	
  
–  Transac8on	
  length	
  (#	
  accesses)	
  and	
  dura8on	
  
–  Transac8on	
  data	
  access	
  parerns	
  

•  Target	
  KPIs:	
  
–  avg.	
  throughput/execu8on	
  8me	
  (including	
  aborted	
  retries)	
  
–  abort	
  probability:	
  conten8on,	
  fallbacks,	
  capacity	
  



Key	
  parameters	
  and	
  assump8ons:	
  
Tx/non-­‐tx	
  code	
  blocks	
  

•  Threads	
  execute	
  either	
  transac8onal	
  or	
  non-­‐
transac8onal	
  code	
  block	
  with	
  probability	
  Pt	
  

•  Data	
  race	
  freedom:	
  	
  
– Transac8onal	
  and	
  non-­‐transac8onal	
  code	
  access	
  
disjoint	
  data	
  

– 1	
  notable	
  excep8on:	
  the	
  fallback	
  lock	
  

Workload assumptions

A thread may start:
Non-Transactional Code Blocks (NTCBs);

With probability 1 ≠ pt

Transactions Code Blocks (TCBs);
With probability pt

Non-transactions do not conflict with transactions;

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 15 / 32



Workload assumptions
Transaction length:

TCBs access a number of granules L and have a duration C :
Assume L known and fixed;

Assume C a known average value, exponentially distributed;

Each W = C/L time interval transactions access a granule;

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 16 / 32

Key	
  parameters	
  and	
  assump8ons:	
  
Transac8on	
  length	
  and	
  dura8on	
  

•  Transac8ons	
  perform,	
  on	
  average,	
  L	
  accesses,	
  each	
  mapping	
  
to	
  a	
  different	
  cache	
  line	
  
–  if	
  mul8ple	
  accesses	
  map	
  to	
  the	
  same	
  cache	
  line,	
  only	
  the	
  first	
  is	
  

accounted	
  for	
  

•  Dura8on	
  of	
  transac8ons	
  is	
  exponen8ally	
  distributed	
  with	
  
mean	
  value	
  C	
  
–  C/L:	
  avg.	
  8me	
  between	
  two	
  memory	
  accesses	
  
–  1/C	
  <<	
  hardware	
  8mer	
  interrupt	
  frequency	
  



Transac8on	
  data	
  access	
  parerns	
  

•  Tx	
  accesses	
  are	
  uniformly	
  distributed	
  across	
  D	
  
granules:	
  
– each	
  granule	
  has	
  the	
  size	
  of	
  a	
  cache	
  line	
  
– non-­‐uniform	
  access	
  parerns	
  can	
  be	
  approximated	
  
via	
  an	
  “equivalent”	
  (smaller)	
  uniform	
  one	
  [TAS14]	
  

•  Each	
  access	
  is	
  a	
  store,	
  	
  
resp.	
  load,	
  with	
  probability	
  	
  
PW,	
  resp.	
  1-­‐PW	
  

Workload assumptions

Access to shared resources

Assume transactions access a granule
pool of size of fixed size D;

Accesses are uniformly distributed,
every granule is equiprobable;

Larger D results in smaller contention:
D æ Œ then there is no contention

Related work on modeling non-uniform
accesses [Didona, 2014]

(INESC-ID & IST & EPFL) White-Box Modeling of HTM February 5, 2017 18 / 32



Modelling	
  execu8on	
  of	
  threads	
  (1/3)	
  

•  At	
  any	
  point	
  in	
  8me,	
  the	
  state	
  of	
  the	
  system	
  can	
  be	
  
described	
  as	
  follows:	
  
–  txi:	
  #threads	
  running	
  transac8ons	
  with	
  i	
  	
  	
  	
  [1,B]	
  retries	
  lep	
  
–  nt:	
  #threads	
  execu8ng	
  non-­‐transac8onal	
  code	
  
– ':	
  #threads	
  in	
  the	
  fallback	
  path	
  
where	
  Σi=1..B	
  txi	
  +	
  nt	
  +	
  z	
  =	
  θ	
  	
  	
  //	
  tot	
  thread	
  count	
  

•  We	
  encode	
  the	
  system’s	
  state	
  via	
  tuples	
  of	
  the	
  	
  form:	
  
	
  <txB,	
  …	
  ,txi	
  ,…	
  ,tx1	
  ,nt	
  ,	
  '>	
  

•  Each	
  state:	
  
–  has	
  a	
  different	
  abort	
  probability	
  
–  produces	
  a	
  different	
  throughput	
  

∈



Modelling	
  execu8on	
  of	
  threads	
  (2/3)	
  

•  …and	
  model	
  execu8on	
  via	
  a	
  Markov	
  Chain:	
  

•  whose	
  transi8on	
  rates	
  depend	
  on	
  source	
  states’:	
  
•  throughput	
  	
  
•  abort	
  probability	
  
•  fallback	
  path	
  ac8va8on	
  probability	
  



Modelling	
  execu8on	
  of	
  threads	
  (3/3)	
  

•  The	
  use	
  of	
  a	
  Markov	
  Chain	
  (MC)	
  allows	
  for	
  
simplifying	
  modelling:	
  
–  target	
  KPIS	
  can	
  be	
  computed	
  on	
  a	
  state-­‐by-­‐state	
  basis:	
  

•  thus	
  focusing	
  on	
  a	
  simpler	
  case	
  	
  

–  next,	
  the	
  sta8onary	
  distribu8on,	
  	
  	
  	
  	
  ,	
  of	
  the	
  MC	
  can	
  be	
  
computed:	
  	
  
•  probability	
  to	
  be	
  in	
  each	
  state	
  of	
  the	
  MC	
  

–  finally,	
  the	
  KPIs	
  for	
  the	
  whole	
  system	
  are	
  obtained	
  as	
  
the	
  average	
  of	
  the	
  KPIs	
  in	
  each	
  state	
  weighted	
  by	
  the	
  
probability	
  of	
  each	
  state,	
  e.g.:	
  

Modeling the system

Stationary distribution of this Markov-chain, fįs :
probability of being in each state;

Probability of abort and throughput are computed as the weighted
average for all states;

Probability of abort: pa =
q

sœS fįspa,s

States with Ø 1 fall-back transactions: pa,s = 1;
Normalize pa to not include these states;

Throughput: X =
q

sœS fįsXs

States with Ø 1 fall-back transactions: Xs = µf
Other states: Xs = ◊tµt
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Roadmap	
  

•  Mo8va8on:	
  Paolo’s	
  HTM	
  Hype	
  Cycle	
  
•  Goals,	
  Approach,	
  Challenges	
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  work	
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  TSX	
  
•  A	
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  control	
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•  Valida8on	
  



Modelling	
  transac8on	
  conflicts	
  

•  Avg.	
  frequency	
  of	
  conflicts	
  for	
  a	
  tx	
  at	
  its	
  i-­‐th	
  
opera8on:	
  

	
  
•  Probability	
  of	
  reaching	
  opera8on	
  i,	
  PR(i),	
  is	
  
computed	
  recursively:	
  

Every	
  W=C/L	
  8me	
  units,	
  
the	
  remaining	
  θt-­‐1	
  

transac8onal	
  threads	
  
access	
  an	
  item	
  

This	
  access	
  must	
  target	
  
one	
  of	
  the	
  i	
  items	
  

already	
  accessed	
  by	
  the	
  
transac8on	
  

To	
  generate	
  a	
  conflict,	
  	
  at	
  
least	
  one	
  of	
  the	
  two	
  

accesses	
  must	
  be	
  a	
  write	
  

H (i) = (θ
t −1)
W

i
D
(1− (1−PW )

2

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t ) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC ) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC )

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.
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Modelling	
  aborts	
  due	
  to	
  fallbacks	
  

•  When	
  a	
  transac8ons	
  with	
  1	
  retry	
  lep	
  aborts	
  
due	
  to	
  a	
  conflict,	
  it	
  will	
  cause	
  the	
  abort	
  of	
  any	
  
other	
  concurrent	
  transac8on	
  

•  We	
  model	
  this	
  by:	
  
– first	
  compu8ng	
  abort	
  probability	
  w/o	
  fallbacks	
  
– correc8ng	
  the	
  frequency	
  of	
  conflicts:	
  

– compu8ng	
  again	
  the	
  abort	
  probability	
  

accesses towards any of these i granules can be approximated as
H(i) = PI�i/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e�H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1�
Z C/L

0

H(1)e�H(1)tdt = 1� e�H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t ) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e�H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L � 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L�1X

i=1

PR(i)

Z W

0
iWtH(i � 1)e�H(i)t

dt+

+CPR(L)(1 � e
�H(L)TC ) =

=TB+
L�1X

i=1

PR(i)

✓
iW

⇣
1 �e

�H(i)W
⌘
+

1

H(i)
�e

�H(i)W
✓
W +

1

H(i)

◆◆
+

+CPR(L)(1 � e
�H(L)TC )

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn

(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
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n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.
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conflicting accesses. Hence, PR(1) = 1. By assumption, T will
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that T manages to perform its second memory access is
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The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i� 1)(1� e�H(i�1)C/L
) (2)

We can now compute the mean response time Rt of one execu-
tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.

Rt is, thus, the weighted sum of two contributes, one corre-
sponding to the case in which T commits (RC

t ) and one corre-
sponding to the abort case RA

t . RC
t is given by the probability that

T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e�H(L)TC . Summing all
these contributes,
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The execution time of T if T manages to perform i accesses and
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t is computed as the weighted average that T is aborted after
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We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1� PR(L)e
�H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn
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The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d � 1 other dangerous
transactions. Hence, Hd

(i) = H(i) + (d� 1)µtpa.
We can now compute the adjusted value for pa. To this end, we

first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
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Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i� 1)e�Hn(i�1)C/L (5)

P d
R(i) = P d

R(i� 1)e�Hd(i�1)C/L (6)
Taking also into account the vulnerability window Tc corre-

sponding to the final transaction validation, the average value for
the adjusted pa is:

p0a = 1�
� n

n+ d
Pn
R(L)e�Hn(L)Tc

+

d

n+ d
P d
R(L)e

�Hd(L)Tc
�

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R0
t =

n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ0
t is, hence, its inverse µ0

t = 1/R0
t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R⇤

t and average abort probability PA.
To this end, we first solve the CTMC by means of standard

methods [27] to obtain the vector ~⇡ of the states probabilities. The
i-th entry of this vector, noted ~⇡i, represents the probability of the
system being in a given state si 2 S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.
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  any	
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overflows	
  (up	
  to	
  C	
  ball	
  in	
  each	
  bin):	
  

Capacity exceptions

Cache can be seen has a set of bins with a given capacity:
B bins;
Each bin has capacity C ;

Reduce the problem of computing probability of capacity exception in
TSX after i accesses to the problem of computing probability that at
least one bin is full after launching i balls.

Number of states reachable after throwing i balls such that no bin
exceeds its capacities, i.e., valid states:

NB,C,I =
maxcÿ

x=minc

3
B
x

4 x-1Ÿ

y=0

3
I-yC
C

4
◊ NB-x,C-1,I-xC

maxc is the maximum full bins, i.e.,
% I

C
&
;

minc is the minimum full bins, i.e., max(0, B ◊ (C ≠ 1));
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Cache can be seen has a set of bins with a given capacity:
B bins;
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TSX after i accesses to the problem of computing probability that at
least one bin is full after launching i balls.

Number of states reachable after throwing i balls such that no bin
exceeds its capacities, i.e., valid states:
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The throughput of the system is defined as the the rate at which
any thread in the system completes a code block (NTCB or TCB).
It is computed as the weighted average of the system being in a
state si times the throughput in si. On its turn, the throughput in si
is the sum of the rates corresponding to the completion of a NTCB
or the commit of a TCB. We refer to the values of µ0

t computed in
state s as µ0

t,s.

X =
X

s(ti,ft=0,nt)2S

~⇡s(ti µ
0
t,s+nt µn)+

X

s(ti,ft�1,nt)2S

~⇡s(nt µn+µf )

(9)

We note that in a state s in which there is at least one transaction
in the fall-back path, this equation captures the fact that there is
only one transaction contributing to the throughput, by committing
with a rate µf =

1
C

. In a state s in which ft = 0, instead, the
ti hardware transactions all contribute to the throughput of the
system, with a rate tiµt,s.

To obtain the response time of a transaction, we exploit Little’s
law [28]. We first express X as the product of the number of active
threads ✓ and the inverse of the average response time of a code
block, whether transactional or not, R⇤. Once we obtain R⇤ we
note that it corresponds to a weighted average of the response
time of a transactional code block R⇤

t and of a non-transactional
code block R⇤

n. Because the system is stable, the probability that a
successfully executed code block is (non) transactional corresponds
to the probability that a (non) transactional code block is started.
Hence, R⇤

= ptR
⇤
t + (1 � pt)R

⇤
n. Because R⇤

n is equal to Cn

and it is given as input to the model, we can solve the equation and
obtain R⇤

t .
The average abort probability PA is computed as the weighted

average of the abort probability values obtained in each state s,
noted p0a,s. Because a transaction cannot abort when running in the
fall-back path, we do not consider the states in which ft > 0:
PA =

P
s(i,f=0,n)2S ~⇡sp

0
a,s.

4.4 Modelling capacity aborts
In this section we discuss how the model presented so far can be
extended, in a modular way, with an additional model aimed solely
at predicting the probability, noted PC(i), that a transaction incurs
a capacity abort when it issues its i-th operation.

The integration of these two models is indeed straightforward
as it suffices to observe that the the probability to reach operation
i when both aborts due to conflicts and capacity exceptions are
possible, noted P 00

R(i), can be expressed as:

P 00
R(i) = PR(i)(1� PC(i)) (10)

Let us now discuss how to derive PC(i). In the light of the
findings reported in Section 3.2, our model assumes that a capacity
abort can only be triggered by the eviction from the of a cache
line that was written by a transaction. To compute the probability
that a transactions experiences a capacity abort at its i-th access
we compute the probability that two events jointly happen: i) the
corresponding granule is stored in a full set of the L1 cache, and ii)
the cache line selected for eviction corresponds to a written granule.

We cast the problem of finding this probability to a variation of
the balls-into-bins problem. In our settings, a ball is an accessed
granule, the bins (B) are the sets of the cache, and the capacity of
each bin (C) is the associativity of the cache.

Each memory access performed by a transaction is a ball thrown
at a bin chosen uniformly at random. The variation with respect
to the classic bin-into-balls-problem is two-fold: i) a ball can be
a write ball (with probabilityPW ) or a read ball (with probability
1 � PW ); ii) if a bin is full, a read ball can be removed from it (if
selected by the eviction policy) to make room for another ball.

Let us start by considering the simpler case in which only write
accesses are performed, i.e., only write balls exist. We define a
valid sequence of length I , a sequence of I ball throws such that
no bin overflows, i.e., no bin receives more than C balls. The total
number of possible sequences of length I with B bins is BI . These
sequences also include invalid ones, i.e., sequences in which bins
can have been assigned more than C balls. We note NB,C,I the
number of valid sequences after I balls have been thrown. Then,
the probability that at least one bin experiences an overflow after
throwing I balls, noted P (c  I) is:

P (c  I) = 1� NB,C,I

BI
(11)

We compute NB,C,I in the following way. Assume that exactly
x bins have been filled after I balls are thrown. The number of
combinations of balls-to-bins allocations is given by the product of
i) the number of ways in which the x bins can be filled with xC
balls and ii) the number, ⌫, of ways in which the the remaining
I � xC balls can be assigned to the remaining B � x bins without
fully filling them. It follows that ⌫ can be computed as NB-x,C-1,I-xC,
i.e., the number of ways in which the remaining I � xC balls can
be thrown in B � x bins in such a way that, at most, every bin is
filled with C � 1 balls.

The minimum value for x is the number of bins that are filled
if balls are assigned to bins in a round-robin fashion: minc =

max(0, I � B(C � 1)). The maximum value for x is the number
of bins that get filled if the balls are thrown to the same bin until it
gets full: maxc = bI/Bc. These x bins can be chosen out of the
total B possible in

�
B
x

�
ways. Finally, the number of ways in which

Cx balls can be thrown in x bins in such a way that all the x bins
are filled is

Qx-1
y=0

�I-yC
C

�
. The resulting equation for NB,C,I is then

NB,C,I =

maxcX

x=minc

NB-x,C-1,I-xC

 
B

x

!
x-1Y

y=0

 
I-yC
C

!
(12)

We now describe how we extend this model to take into account
that the capacity abort probability also varies with the probability
of write, PW . In this case, the number of valid sequences of a
given length I is larger than for the case of PW = 1, since if a
full bin contains at least a read ball b, it can still accommodate
an additional (read/write) ball, provided that b is selected by the
eviction policy. Given the combinatorial nature of the problem,
the number of scenarios to be accounted for in order to derive an
exact probabilistic solution increases dramatically for the case of
PW 6= 1, along with the complexity and computational cost of the
resulting model.

We propose therefore an approximate solution technique that is
based on the following approach. Let us introduce the notations: i)
P (c  IPW

), to refer to the probability of having a capacity abort
upon during any of the first I accesses of a transaction that executes
writes with probability PW ; ii) P (c = IPW ^ ¬c < (I � 1)

PW
),

to refer to the probability of having a capacity abort exactly at
the I-th access and of not incurring capacity aborts during the
previous I-1 operations, where each of the I operations is a write
with probability PW .

We start by expressing P (c = IPW ^ ¬c < (I � 1)

PW
) as:

P (c = IPW |¬c < I � 1

PW
)P (¬c < (I � 1)

PW
) (13)

Next we observe that the probability of having a capacity ex-
ception at operation I is not affected by whether this operation is a
read or write , but only by whether the corresponding ball I hits a
full bin and causes the “eviction” of a write ball. Hence:

P (c = IPW |¬c < (I � 1)

PW
) = P (c = I|¬c < (I � 1)

PW
)
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Next, we introduce the following approximation:

P (c = I|¬c < (I � 1)

PW
) ⇡ P (c = I|¬c < (I � 1))PW

namely, we approximate the conditioned probability of having a
capacity after I read/write accesses with the conditioned probability
of having a capacity after I write accesses scaled down by a factor
PW . The latter scaling factor reflects the fact that P (c = I|¬c <
I � 1) is computed assuming that all the full bins after I-1 balls
contain exclusively write balls. Conversely, if transactions issue
write operations with probability PW , on average the full bins after
I � 1 throws will contain only a fraction of write ball equal to
PWC over a total of C balls. This is only an approximation as
the expected number of full bins after I balls when PW < 1 is
smaller than if PW = 1. In fact, if writes are rare (small PW ),
one can throw in a single bin a number of balls that largely exceed
the bin’s capacity; when PW = 1, conversely the min number of
full bins is strictly bounded by max(0, I �B(C � 1)) . As we will
show in Section 5, this approximation yields good accuracy for PW

values larger than 1%, which, as discussed in Section 3.2, is also a
necessary condition for modelling accurately the cache dynamics
by modelling solely the L1 dynamics.

P (c = I|¬c < I � 1) can be computed by expressing it
as (P (c  I) � P (c  I � 1))/(1 � P (c < I � 1)) and
exploiting Eq. 11, using the definition of conditioned probability.
P (¬c < (I � 1)

PW
), in Eq. 13, can be expressed as:

P (¬c < (I�1)

PW
) = 1�

I�1X

J=1

P (c = JPW ^¬c < (J �1)

PW
)

and can be computed recursively setting

P (c = 1

PW ^ ¬c < 0

PW
) = 1

.
Finally, P (c  IPW

) can simply be expressed as the sum of the
probabilities of having a capacity abort exactly at operation J , and
not earlier, for all J < I :

P (c  IPW
) =

IX

J=0

P (c = JPW ^ ¬c < (J � 1)

PW
)

5. Validation
This section reports the results of a validation study that compares
the KPIs predicted by the model presented in the previous sections
with those achieved when executing on our target experimental
platform (see Section 3).

We start by validating the accuracy of our model of capacity
aborts, since it is a building block on which the overall perfor-
mance model is built. To this end we run several experiments in
which transactions perform N distinct memory accesses with a
write probability 0.01  PW  1. We then measure the proba-
bility that a transaction incurs a capacity aborts before successfully
completing the N memory accesses. Such probability is calculated
as the ratio between the number of capacity aborts and the total
number of started transactions (excluding the ones failed because
of spurious aborts).

To control as much as possible the transaction footprints, we
need to minimize the amount of auxiliary data structures used to
generate the random access path. To this end, transactions can only
access memory addresses belonging to a large set of D candidates.
Each memory location d 2 D is pre-initialized with a random
address belonging to D. After accessing d, a transaction accesses
the granule at the address encoded in d. In this way, we generate a
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Figure 2: Validating the analytical model (ANA) for the probability
of capacity aborts vs a real system (HAR)

random access path over the D possible addresses using minimal
auxiliary memory during the experiment.

Figure 2 reports the results of the experiments and contrasts
them with the predictions output by our analytical model of ca-
pacity aborts. The plot shows that the model is able to predict well
the probability of a capacity abort as a function of the number of
(tentatively) accessed granules and write access probability, attain-
ing a MAE of 2.12%. The highest error is incurred by the model
for PW = 0.01. This is an effect of the approximation that we
have introduced in Section 4.4 to obtain a closed form solution for
the capacity abort probability. Such approximation, in fact, works
better as PW tends to 1 and, with PW = 0 would yield to a null
probability of incurring a capacity abort, regardless of the number
of performed accesses.

We now evaluate the accuracy of the presented analytical
model as a whole. In order to stress its prediction capabilities,
we use a synthetic benchmark that generates different contention
levels and access patterns. In total, we consider a set of 380
workloads, obtained by varying the workload parameters as fol-
lows: ✓ 2 {1, 2, 3, 4}, B 2 {2, 4, 6}, L 2 {2, 5, 10, 20},
D 2 {512, 2048, 8192, 32768}, PW 2 {0.5, 1.0}.

A micro-benchmark launches ✓ concurrent threads pinned to
different physical cores, hence, not sharing private caches and other
resources. These threads start transactions that perform L accesses
uniformly at random over a predefined granule pool of size D.

The memory accesses of a transaction are performed as follows.
First, a random random value 0  g < D is generated, such
that g is different from previously generated accesses. Then, with
probability PW the transaction writes g; with probability 1 � PW

the transaction reads g. The granules fit an entire cache line and are
aligned in memory to avoid aliasing conflicts.

The CPU demand of a transaction depends on the number L
of accessed granules. For each of the considered values of L, we
measure the corresponding CPU demand C, which we provide as
input to the model.

In Figure 3 we report a scatterplot comparing the real and
predicted probability of abort and throughput. The reported results
for the real system are obtained as the average of 10000 executions,
from which we removed the first and last quartile to filter out
outliers. Presented error metrics are MAPE, MAE and the Pearson
correlation factor R. The closer R is to 1, the better is the output
prediction of the model.

The reported data confirms the high accuracy of the proposed
model in predicting both the throughput and abort probability of the
system: the MAE for the abort rate is less than 5% and the MAPE
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(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
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for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D0 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D0, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.
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