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Transactional Memory: a history
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Hardware TM  Software TM Hybrid TM

1993 Today

➔ Original proposal by Herlihy-Moss (‘93)
➔ Exploit cache-coherence
➔ Optimistic synchronization: buffer speculative updates

➔ Software implementation by Shavit-Touitou (‘95): “static” 
transactions

➔ “Dynamic” STM by Herlihy et al. (‘03)
◆ Incremental validation cost

➔ TL2 by Dice et al. (‘06), NOrec by Spear et al. (‘06),...
◆ Mitigate validation cost

➔ HTM support: Intel Haswell, IBM Power8,..
◆ Different memory models and supported instructions

➔ Hardware limitations and “spurious” aborts
➔ Fallback to software transactions

1995-today



Transactional Memory: a history
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Hardware TM Hybrid TM

1993 Today

Cost of Concurrency in 
Hybrid TMs?

1995-today

 Software TM



Hybrid Transactional Memory (HyTM) 
Model
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Transactions

Data items 

Base objects

HW primitives

Transactional operations

Fast-path 

Executed in hardware
Exploit cache-coherence

Spurious aborts
Cache limitations



Hybrid Transactional Memory (HyTM) 
Model

5

Transactions

Data items 

Base objects

HW primitives

Transactional operations

Slow-path 

Executed in software
Reliable for large 
transactions
Slower execution time
Harder to verify



Hybrid Transactional Memory (HyTM) 
Model
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Transactions

Data items 

Base objects

HW primitives

Transactional operations

Cached access 
Direct access 

➢ For slow-path transactions
➢ Operate directly on memory 

state

➢ For fast-path transactions
➢ Operate on “cached” memory 

state
○ Direct on Power8

➢ Maintain TRACKING SET
○ Shared/exclusive mode
○ Capacity limit



Hybrid Transactional Memory (HyTM) 
Model

7

Tracking set aborts in fast-path transactions
Automatic contention detection for cached accesses

T2Fast-path 

WRITE  to base object 
B (EXCLUSIVE mode) 

T1

ACCESS base 
object B

Fast-path or 
slow-path 

A2

Tracking set is 
invalidated and T2 
must abort



Hybrid Transactional Memory (HyTM) 
Model

8

Tracking set aborts in fast-path transactions
Automatic contention detection for cached accesses

T2Fast-path 

READ  to base object B 
(SHARED mode) 

T1

WRITE base object 
B 

Fast-path or 
slow-path 

A2

Tracking set is 
invalidated and T2 
must abort



Hybrid Transactional Memory (HyTM) 
Model
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Committed fast-path transactions (only cached 
accesses) appear to execute atomically (single step)

T2Fast-path 

Aborted or incomplete

T1Slow-path Execution indistinguishable 
to T1 from an execution in 
which T2 does not participate
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Instrumentation
● Fast-path transactions intuitively need code 

“instrumentation”
○ Detect overlap contention with slow-path

■ Global timestamp, ownership records, etc.
○ Instrumentation affects performance

T0

Slow-path 

T1

Partial commit 
of X and Y

Fast-path
W(X,1) W(Y,1) R(X)→?

T1 must access 
“meta-information” to 
detect contention with T0
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Sequential Progressive

Minimal concurrency More concurrency

O(1) fast-path 
instrumentation

Ω(m) fast-path 
instrumentation

Cost of concurrency in HyTM

Cost on slow-path 
transactions?
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(m-1) invisible reads 
of distinct  data items
X1 …. Xm-1 

Read of Xm must 
return the value 1 
updated by Tm

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space 
complexity for slow-path transactions

Linear validation cost in HyTM

CommitsTm
W(Xm,1)

Fast-path 

T0
R(X1)→0 R(Xm)→1R(Xm-1)→0

Slow-path 
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CommitsTm
W(Xm,1)T0 does not 

observe Tm until 
the access of 
data item Xm

Read of Xm by T0 
must return the 
value 1

T0
R(X1)→0 R(Xm)→1R(Xm-1)→0

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space 
complexity for slow-path transactions

Slow-path 

Fast-path 
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Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)→?R(Xm-1)→0

W(X1,1)

Cannot return 
value  1--cycle 
in serialization

T1

Tm

T0

T1Write new value to 
data item X1 and 
commit

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space 
complexity for slow-path transactions

Slow-path 

Fast-path 

Fast-path 



Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)R(Xm-1)→0

W(X1,1)T1

W(Xm-1,1)Tm-1 15

Each fast-path 
transaction 
writes new values 
to data objects X1 
to Xm-1

T0 is invisible to fast-path transactions T1 …… Tm

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space 
complexity for slow-path transactions

Fast-path 



Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)R(Xm-1)→0

W(X1,1)T1

W(Xm-1,1)Tm-1 16

Tracking set 
aborts: cannot 
contend on same 
memory location

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space 
complexity for slow-path transactions

Slow-path 



Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)R(Xm-1)→0

W(X1,1)T1

W(Xm-1,1)Tm-1 17

Read of Xm must 
access m-1 distinct 
memory locations

Validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space 
complexity for slow-path transactions

Slow-path 



Validation cost in HyTM

Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)R(Xm-1)→0

W(X1,1)T1

W(Xm-1,1)Tm-1 18

Transaction T0 must take at 
least ∑ i (i=1 to m-1)=Ω(m2) 
memory steps

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space 
complexity for slow-path transactions

Slow-path 



19

Sequential Progressive

Minimal concurrency More concurrency

O(1) fast-path 
instrumentation+
O(1) slow-path 
reads

Ω(m) fast-path 
instrumentation + 
Ω(m) slow-path 
steps per-read

Cost of concurrency in HyTM

Fast-path transactions aborted 
by non-conflicting ones or linear 
fast-path instrumentation cost 
and linear slow-path steps
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Sequential Progressive

Minimal concurrency More concurrency

O(1) fast-path 
instrumentation+
O(1) slow-path 
reads

Ω(m) fast-path 
instrumentation + 
Ω(m) slow-path 
steps per-read

Cost of concurrency in HyTM

Progressive STMs like TL2  
circumvent the cost of validation for 
better performance, but impossible 

in progressive HyTMs!



Cost of Concurrency in HyTM
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Algorithm 1 Algorithm 2 Transactional 
Lock Elision

Hybrid Norec

Instrumentation 
in fast-path reads

per-read constant constant constant

Instrumentation 
in fast-path 
writes

per-write per-write constant constant

Validation in 
slow-path reads

Ω(|Rset|) Ω(|Rset|) none Ω(|Rset|) only if 
concurrency

h/w-s/w 
concurrency

prog prog for 
slow-path 
readers

zero Not prog; small 
contention 
window

Direct accesses 
inside fast-path?

yes no no yes



Experimental setup
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● Large-scale 2-socket Intel E7-4830 v3 with 12 cores per socket 
and 2 hyperthreads (HTs) per core, for a total of 48 threads

● Each core has a private 32KB L1 cache and 256KB L2 cache 
(which is shared between HTs on a core)
○ All cores on a socket share a 30MB L3 cache
○ Non-uniform memory architecture (NUMA)
○ 128GB of RAM, and runs Ubuntu 14.04 LTS.

● All code was compiled with the GNU C++ compiler (G++) 4.8.4 
with build target x86_64-linux-gnu and compilation options 
-std=c++0x -O3 -mx32



Experimental methodology
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● Six timed trials for several thread counts n
○ Prefilling: n concurrent threads perform 50% Insert and 

50% Delete operations on keys drawn uniformly randomly 
from [0, 105 ) until the size of the tree converges to a 
steady state (containing approximately 105 /2 keys)

○ Measuring: Each thread performs (U/2)% Insert, (U/2)% 
Delete and (100 − U )% Search operations, on keys/values 
drawn uniformly from [0, 105 ); U=0,10,40

● Plots for Binary Search Tree (BST) microbenchmark
○ With (without) one (any) thread performing 

RangeIncrement operations
■ Capacity aborts on fast-path



Cost of Concurrency in HyTM
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0% updates: #threads vs. ops/microsec



Cost of Concurrency in HyTM
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10% updates: #threads vs. ops/microsec



Cost of Concurrency in HyTM
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● Read-only workloads: costs purely down to fast-path
○ Algorithm 1 overhead due to linear instrumentation

● Update workloads with RangeIncrement
○ TLE suffers due to global lock bottleneck
○ NUMA effects on update heavy workloads

■ From thread counts > 24
■ Hybrid noREC performs poorly to Algorithm 2 

for same reasons as TLE

40% updates: #threads vs. ops/microsec



Circumventing the impossibilities?
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• Middle-path approach? Ongoing work

○ Almost uninstrumented “fast” fast-path
■ No concurrency with slow-path
■ Concurrent with middle-path

• Ongoing experiments on Intel Haswell and 
IBM Power8 (STAMP and data structure microbenchmarks)
○ Completely different memory models

■ Power8 allows “direct” accesses inside hardware



Transactional memory is here to stay?
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• HyTM: an efficient “universal construction”?
○ Start with a “base” HyTM with minimal instrumentation 

overhead, maximal concurrency and little global 
metadata bottleneck

○ Dynamic implementation choices depending on 
workloads
■ Multi-path approach

○ Formal methods and verification techniques
○ Impact of cache hierarchy, cache-size and memory 

model on HyTM performance


