Cost of Concurrency in Hybrid
Transactional Memory

Trevor Brown (University of Toronto)
Srivatsan Ravi (Purdue University)

Transactional Memory: a history

4

Hardware TM Software TM Hybrid TM
|
1993 1995-today Today
\ H

/—) Software implementation by W atic”

-) HTM support: Intel Haswell, IBM Power8,...
4 Different memory models and supported instructions
=> Hardware limitations and “spurious” aborts

—

Transactional Memory: a history

Hardware TM Software TM Hybrid TM
! >
1993 1995-today Today

- Cost of Concurrency in

e e - o o -

Hybrid TMs?

— o e o o m e e e e e EEe M mm M R B EEe S M R S S S M M M M S S M e Mmm S S M e S M e e e O

Hybrid Transactional Memory (HyTM)
Model

| Transactions)]- FaSt-path

I ~ N

|

|

|

|

1 RS,

|
Transactional operations _l: T l

3 Executed in hardware

Exploit cache-coherence

| |
: Data items :
|

|
I
|
|
|
I Sy
|
HW iprimitives .l: f I
1
I
|
|
1
I

— Spurious aborts
Cache limitations

& J

Hybrid Transactional Memory (HyTM)
Model

:Transactions :]— SIOW-path

~ B

Executed in software
=§= Reliable for large
transactions

I |

|
|
|
|
|
|
Transactional operations _l: T l

|

|

| |

: : Data items :

| |
HW primitives .l: f I

: — Slower execution time
: Harder to verify
|
|

e . g /

Hybrid Transactional Memory (HyTM)
Model

o Capacity limit

: S : /> For fast-path transactions \
| ' Transactions | . | > Operate on “cached” memory
B . : state
Transactional operations _l: T l ! o Direct on Power8
————————— . > Maintain TRACKING SET
| | 1 .
| Dataitems ! | o Shared/exclusive mode
| |
l

} Direct access

|
I
|
|
|
I Sy
|
HW primitives .l: f I
1
I
|
|
1
I

. _____=—------" 1Cached access

Hybrid Transactional Memory (HyTM)
Model

Tracking set aborts in fast-path transactions
Automatic contention detection for cached accesses

WRITE to base object
B (EXCLUSIVE mode) Tracking set is
invalidated and T2
Fast-path
ast-p T2 - B __x_ AD must abort
Fast-pathor | T1 @

slow-path

ACCESS base
object B

Hybrid Transactional Memory (HyTM)
Model

Tracking set aborts in fast-path transactions
Automatic contention detection for cached accesses

READ to base object B
(SHARED mode)

Tracking set is

invalidated and T2
Fast-path
p T2 - L _x_ AD must abort
Fast-path or T1 g *
slow-path

WRITE base object
B

Hybrid Transactional Memory (HyTM)
Model

Committed fast-path transactions (only cached
accesses) appear to execute atomically (single step)

Aborted or incomplete

Fast-path | T2

[I——

Execution indistinguishable
to T1 from an execution in
which T2 does not participate

Slow-path | T1

“instrumentation”

Instrumentation

e Fast-path transactions intuitively need code

o Detect overlap contention with slow-path
m Global timestamp, ownership records, etc.
o Instrumentation affects performance

Slow-path

T0

O

W(X,1)

W(Y,1)

Partial commit
of XandY

Fast-path

T1

R(X)—7

O

T1 must access
“meta-information” to
detect contention with TO

10

Cost of concurrency in HyTM

Sequential

Progressive

4

Minimal concurrency

O(1) fast-path
instrumentation

More concurrency

7

: k
iCost on slc_>w-path i Q(m) fast-path
_ transactions? instrumentation

11

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads = Linear time and space

complexity for slow-path transactions

Fast-path Slow-path
T~ W(X,1) Commits T RX)-0 - R(X)—0 R(X_)—1
o—0n = =

(m-1) invisible reads
of distinct data items
X ... X

1 m-1

Read of Xrn must
return the value 1
updated by T

12

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads = Linear time and space
complexity for slow-path transactions

Slow-path
T, RX)=0 - R(X)-0 R(X_)—1
- |
|)

T, does not Fast-path | T, W(X,1) Commits Read of X by T,

observe Tm until = must retu;'nn the

the access of value 1

data item X
% mn ~

13

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads = Linear time and space
complexity for slow-path transactions

Slow-path
T RX)-0 o RX)0 ROX)2 Cannot return
0 g m O value 1--cycle
in serialization
Fast-path [T, W(X..1) -
Oo——0O

. WX, 1) \Y

Write new value to T, o—" " 1
data item X, and 1 To

2 1 1&/

commit Fast-path 14

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads = Linear time and space
complexity for slow-path transactions

T, RX)=0 - R(X,)-0 R
= Each fast-path)
T WX 1) transaction
mog ™ o writes new values
W(X,,1) to data objects X,
Fast-path T, —""§
: to Xm-1 J
T W(X__,1) }
m-1 O——0 15

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads = Linear time and space
complexity for slow-path transactions

Slow-path
T, RX)=0 - RKX,)0 R*D
T WX,1)
Tracking set Oo——0O
aborts: cannot T W(X,,1)

1 Oo———1
contend on same :
memory location - WX 1)
_ m-1 E—————

16

Validation cost in HyTM

Progressive opaque HyTM+Invisible reads = Linear time and space
complexity for slow-path transactions

Slow-path
T, R(X)=0 - R(X)—0 R(X,)
) |
\
T W) Read of X_ must
- . W(X..1) access m-1 distinct
T —"" 5 memory locations

WX, ;1) J

Tht —"" 1 17

Validation cost in HyTM

Progressive opaque HyTM+Invisible reads = Linear time and space
complexity for slow-path transactions

Slow-path
R(X,)-»0 - R(X_)—0 R(X.)
I (X,) (Xin1) N
4 /\ T W(X,1)
Transaction T) must take at O———-=0 -
least S i (i=1 to m-1)=Q(m?) T, (X;,1)
memory steps :

N P T)

18

Cost of concurrency in HyTM

Sequential Progressive
Minimal concurrency More concurrency

Fast-path transactions aborted
O(1) fast-path by non-conflicting ones or linear _Q(m) fast-pat.h
instrumentation+ fast-path instrumentation cost instrumentation +
O(1) slow-path and linear slow-path steps Q(m) slow-path
steps per-read

reads
19

Cost of concurrency in HyTM

Sequential

Progressive

4

Minimal concurrency

O(1) fast-path
instrumentation+
O(1) slow-path
reads

Progressive STMs like TL2
circumvent the cost of validation for
better performance, but impossible
in progressive HyTMs!

More concurrency

Q(m) fast-path
instrumentation +
Q(m) slow-path
steps per-read

20

Cost of Concurrency in HyTM

Instrumentation
in fast-path reads

Instrumentation
in fast-path
writes

Validation in
slow-path reads

h/w-s/w

concurrency

Direct accesses
inside fast-path?

Algorithm 1

per-read

per-write

Q(|Rset|)

prog

yes

Algorithm 2

constant

per-write

Q(|Rset|)

prog for
slow-path
readers

no

Transactional
Lock Elision

constant

constant

none

Zero

no

Hybrid Norec

constant

constant

Q(|Rset|) only if
concurrency

Not prog; small
contention
window

yes

21

Experimental setup

Large-scale 2-socket Intel E7-4830 v3 with 12 cores per socket
and 2 hyperthreads (HTs) per core, for a total of 48 threads

Each core has a private 32KB L1 cache and 256KB L2 cache
(which is shared between HTs on a core)

o All cores on a socket share a 30MB L3 cache

o Non-uniform memory architecture (NUMA)

o 128GB of RAM, and runs Ubuntu 14.04 LTS.

All code was compiled with the GNU C++ compiler (G++) 4.8.4
with build target x86_64-linux-gnu and compilation options
-std=c++0x -03 -mx32

22

Experimental methodology

e Six timed trials for several thread counts n

o Prefilling: n concurrent threads perform 50% Insert and
50% Delete operations on keys drawn uniformly randomly
from [0, 10°) until the size of the tree converges to a
steady state (containing approximately 10° /2 keys)

o Measuring: Each thread performs (U/2)% Insert, (U/2)%
Delete and (100 — U)% Search operations, on keys/values
drawn uniformly from [0, 10°); U=0,10,40

e Plots for Binary Search Tree (BST) microbenchmark
o With (without) one (any) thread performing

Rangelncrement operations
m Capacity aborts on fast-path

23

Cost of Concurrency in HyTM

0% updates: #threads vs. ops/microsec

--TL2 -B-TLE -A-Algorithm 1 =>¢Algorithm 2 =¥Hybrid noREC

50 50
40 40
30 30
20 20
10 10 +—
0 0

0O 8 16 24 32 40 48 0 8 16 24 32 40 48

24

Cost of Concurrency in HyTM

10% updates: #threads vs. ops/microsec

--TL2 -B-TLE -A-Algorithm 1 =>¢Algorithm 2 =¥Hybrid noREC
50 50
40 40
30 30
20 20
10 10 |
| 0 i,
O 8 16 24 32 40 48 0 8 16 24 32 40 48

25

Cost of Concurrency in HyTM

40% updates: #threads vs. ops/microsec

--TL2 -B-TLE Algorithm 1 =¢Algorithm 2 Hybrid noREC

50 e Read-only workloads: costs purely down to fast-path
o Algorithm 1 overhead due to linear instrumentation
40 : N
e Update workloads with Rangelncrement \ / y
30 o TLE suffers due to global lock bottleneck o il
o NUMA effects on update heavy workloads |
20 m From thread counts > 24 E
/3 m Hybrid noREC performs poorly to Algorithm 2
10 A } NV for same reasons as TLE
b
R R ___ __ U e
0 8 16 24 32 40 48 0O 8 16 24 32 40 48

26

Circumventing the impossibilities?

- Middle-path approach? ongoing work
o Almost uninstrumented “fast” fast-path
m No concurrency with slow-path
m Concurrent with middle-path

- Ongoing experiments on Intel Haswell and

I B IVI POWG r8 (STAMP and data structure microbenchmarks)

o Completely different memory models
m Power8 allows “direct” accesses inside hardware

27

Transactional memory is here to stay?

 HyTM: an efficient “universal construction™?

o Start with a "“base” HyTM with minimal instrumentation
overhead, maximal concurrency and little global
metadata bottleneck

o Dynamic implementation choices depending on
workloads

m Multi-path approach
o Formal methods and verification techniques
o Impact of cache hierarchy, cache-size and memory

model on HyTM performance
28

