
Cost of Concurrency in Hybrid
Transactional Memory

Trevor Brown (University of Toronto)
Srivatsan Ravi (Purdue University)

1

Transactional Memory: a history

2

Hardware TM Software TM Hybrid TM

1993 Today

➔ Original proposal by Herlihy-Moss (‘93)
➔ Exploit cache-coherence
➔ Optimistic synchronization: buffer speculative updates

➔ Software implementation by Shavit-Touitou (‘95): “static”
transactions

➔ “Dynamic” STM by Herlihy et al. (‘03)
◆ Incremental validation cost

➔ TL2 by Dice et al. (‘06), NOrec by Spear et al. (‘06),...
◆ Mitigate validation cost

➔ HTM support: Intel Haswell, IBM Power8,..
◆ Different memory models and supported instructions

➔ Hardware limitations and “spurious” aborts
➔ Fallback to software transactions

1995-today

Transactional Memory: a history

3

Hardware TM Hybrid TM

1993 Today

Cost of Concurrency in
Hybrid TMs?

1995-today

 Software TM

Hybrid Transactional Memory (HyTM)
Model

4

Transactions

Data items

Base objects

HW primitives

Transactional operations

Fast-path

Executed in hardware
Exploit cache-coherence

Spurious aborts
Cache limitations

Hybrid Transactional Memory (HyTM)
Model

5

Transactions

Data items

Base objects

HW primitives

Transactional operations

Slow-path

Executed in software
Reliable for large
transactions
Slower execution time
Harder to verify

Hybrid Transactional Memory (HyTM)
Model

6

Transactions

Data items

Base objects

HW primitives

Transactional operations

Cached access
Direct access

➢ For slow-path transactions
➢ Operate directly on memory

state

➢ For fast-path transactions
➢ Operate on “cached” memory

state
○ Direct on Power8

➢ Maintain TRACKING SET
○ Shared/exclusive mode
○ Capacity limit

Hybrid Transactional Memory (HyTM)
Model

7

Tracking set aborts in fast-path transactions
Automatic contention detection for cached accesses

T2Fast-path

WRITE to base object
B (EXCLUSIVE mode)

T1

ACCESS base
object B

Fast-path or
slow-path

A2

Tracking set is
invalidated and T2
must abort

Hybrid Transactional Memory (HyTM)
Model

8

Tracking set aborts in fast-path transactions
Automatic contention detection for cached accesses

T2Fast-path

READ to base object B
(SHARED mode)

T1

WRITE base object
B

Fast-path or
slow-path

A2

Tracking set is
invalidated and T2
must abort

Hybrid Transactional Memory (HyTM)
Model

9

Committed fast-path transactions (only cached
accesses) appear to execute atomically (single step)

T2Fast-path

Aborted or incomplete

T1Slow-path Execution indistinguishable
to T1 from an execution in
which T2 does not participate

10

Instrumentation
● Fast-path transactions intuitively need code

“instrumentation”
○ Detect overlap contention with slow-path

■ Global timestamp, ownership records, etc.
○ Instrumentation affects performance

T0

Slow-path

T1

Partial commit
of X and Y

Fast-path
W(X,1) W(Y,1) R(X)→?

T1 must access
“meta-information” to
detect contention with T0

11

Sequential Progressive

Minimal concurrency More concurrency

O(1) fast-path
instrumentation

Ω(m) fast-path
instrumentation

Cost of concurrency in HyTM

Cost on slow-path
transactions?

12

(m-1) invisible reads
of distinct data items
X1 …. Xm-1

Read of Xm must
return the value 1
updated by Tm

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space
complexity for slow-path transactions

Linear validation cost in HyTM

CommitsTm
W(Xm,1)

Fast-path

T0
R(X1)→0 R(Xm)→1R(Xm-1)→0

Slow-path

13

CommitsTm
W(Xm,1)T0 does not

observe Tm until
the access of
data item Xm

Read of Xm by T0
must return the
value 1

T0
R(X1)→0 R(Xm)→1R(Xm-1)→0

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space
complexity for slow-path transactions

Slow-path

Fast-path

14

Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)→?R(Xm-1)→0

W(X1,1)

Cannot return
value 1--cycle
in serialization

T1

Tm

T0

T1Write new value to
data item X1 and
commit

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space
complexity for slow-path transactions

Slow-path

Fast-path

Fast-path

Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)R(Xm-1)→0

W(X1,1)T1

W(Xm-1,1)Tm-1 15

Each fast-path
transaction
writes new values
to data objects X1
to Xm-1

T0 is invisible to fast-path transactions T1 …… Tm

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space
complexity for slow-path transactions

Fast-path

Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)R(Xm-1)→0

W(X1,1)T1

W(Xm-1,1)Tm-1 16

Tracking set
aborts: cannot
contend on same
memory location

Linear validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space
complexity for slow-path transactions

Slow-path

Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)R(Xm-1)→0

W(X1,1)T1

W(Xm-1,1)Tm-1 17

Read of Xm must
access m-1 distinct
memory locations

Validation cost in HyTM

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space
complexity for slow-path transactions

Slow-path

Validation cost in HyTM

Tm
W(Xm,1)

T0
R(X1)→0 R(Xm)R(Xm-1)→0

W(X1,1)T1

W(Xm-1,1)Tm-1 18

Transaction T0 must take at
least ∑ i (i=1 to m-1)=Ω(m2)
memory steps

Progressive opaque HyTM+Invisible reads ⇒ Linear time and space
complexity for slow-path transactions

Slow-path

19

Sequential Progressive

Minimal concurrency More concurrency

O(1) fast-path
instrumentation+
O(1) slow-path
reads

Ω(m) fast-path
instrumentation +
Ω(m) slow-path
steps per-read

Cost of concurrency in HyTM

Fast-path transactions aborted
by non-conflicting ones or linear
fast-path instrumentation cost
and linear slow-path steps

20

Sequential Progressive

Minimal concurrency More concurrency

O(1) fast-path
instrumentation+
O(1) slow-path
reads

Ω(m) fast-path
instrumentation +
Ω(m) slow-path
steps per-read

Cost of concurrency in HyTM

Progressive STMs like TL2
circumvent the cost of validation for
better performance, but impossible

in progressive HyTMs!

Cost of Concurrency in HyTM

21

Algorithm 1 Algorithm 2 Transactional
Lock Elision

Hybrid Norec

Instrumentation
in fast-path reads

per-read constant constant constant

Instrumentation
in fast-path
writes

per-write per-write constant constant

Validation in
slow-path reads

Ω(|Rset|) Ω(|Rset|) none Ω(|Rset|) only if
concurrency

h/w-s/w
concurrency

prog prog for
slow-path
readers

zero Not prog; small
contention
window

Direct accesses
inside fast-path?

yes no no yes

Experimental setup

22

● Large-scale 2-socket Intel E7-4830 v3 with 12 cores per socket
and 2 hyperthreads (HTs) per core, for a total of 48 threads

● Each core has a private 32KB L1 cache and 256KB L2 cache
(which is shared between HTs on a core)
○ All cores on a socket share a 30MB L3 cache
○ Non-uniform memory architecture (NUMA)
○ 128GB of RAM, and runs Ubuntu 14.04 LTS.

● All code was compiled with the GNU C++ compiler (G++) 4.8.4
with build target x86_64-linux-gnu and compilation options
-std=c++0x -O3 -mx32

Experimental methodology

23

● Six timed trials for several thread counts n
○ Prefilling: n concurrent threads perform 50% Insert and

50% Delete operations on keys drawn uniformly randomly
from [0, 105) until the size of the tree converges to a
steady state (containing approximately 105 /2 keys)

○ Measuring: Each thread performs (U/2)% Insert, (U/2)%
Delete and (100 − U)% Search operations, on keys/values
drawn uniformly from [0, 105); U=0,10,40

● Plots for Binary Search Tree (BST) microbenchmark
○ With (without) one (any) thread performing

RangeIncrement operations
■ Capacity aborts on fast-path

Cost of Concurrency in HyTM

24

0% updates: #threads vs. ops/microsec

Cost of Concurrency in HyTM

25

10% updates: #threads vs. ops/microsec

Cost of Concurrency in HyTM

26

● Read-only workloads: costs purely down to fast-path
○ Algorithm 1 overhead due to linear instrumentation

● Update workloads with RangeIncrement
○ TLE suffers due to global lock bottleneck
○ NUMA effects on update heavy workloads

■ From thread counts > 24
■ Hybrid noREC performs poorly to Algorithm 2

for same reasons as TLE

40% updates: #threads vs. ops/microsec

Circumventing the impossibilities?

27

• Middle-path approach? Ongoing work

○ Almost uninstrumented “fast” fast-path
■ No concurrency with slow-path
■ Concurrent with middle-path

• Ongoing experiments on Intel Haswell and
IBM Power8 (STAMP and data structure microbenchmarks)
○ Completely different memory models

■ Power8 allows “direct” accesses inside hardware

Transactional memory is here to stay?

28

• HyTM: an efficient “universal construction”?
○ Start with a “base” HyTM with minimal instrumentation

overhead, maximal concurrency and little global
metadata bottleneck

○ Dynamic implementation choices depending on
workloads
■ Multi-path approach

○ Formal methods and verification techniques
○ Impact of cache hierarchy, cache-size and memory

model on HyTM performance

