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Abstract
Similar to fine-grained locking, and lock-free programming, mem-
ory management poses challenges to programming systems with
hardware transactional memory (HTM). Thus, scalable data struc-
tures need to integrate a memory management scheme, such as
hazard pointers, repeated offender, reference counting, and Stack-
Track.

In this paper, we revisit epochs, another popular memory man-
agement technique, and offer an interpretation for HTM systems.
HTM helps avoid a common problem of quiescent techniques
where delayed or failed threads prevent memory reclamation. In
transactional mode, HTM allows threads to interrupt other delayed
threads that prevent progress otherwise. This paper describes the
design and implementation of this technique and discusses trade-
offs compared to other techniques. Experiments were conducted on
Intel Haswell and Power8 architectures. The described technique
is competitive with other HTM based techniques. Our results also
demonstrate that under many scenarios, HTM based algorithms can
be as fast as other optimized algorithms.

1. Introduction
Threads in shared memory multiprocessor systems communicate
by executing reads and writes to shared data. The result of the
concurrent execution of a number of operations is dependent on
the threads’ interleaving. Thus, programmers need to rely on syn-
chronization mechanisms to enforce the desired interleaving of op-
erations. The most common technique for synchronizing concur-
rent threads is the use of a mutual exclusion lock (mutex) [19],
which blocks all contending threads except the one holding the
lock, thereby guaranteeing thread-safe operations. Even for small
multi-core systems, the use of blocking reduces parallelism, intro-
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duces safety hazards, and can lead to convoying effects that can
seriously hurt application performance [13].

In an effort to eliminate problems of coarse grain locks, fine-
grain locking and lock-free synchronization techniques have been
explored. Until recently, most hardware architectures supported
lock-free programming by providing single- or double-word wide
atomic primitives. These primitives have been employed to imple-
ment many concurrent data structures. One challenge that most of
these implementations face is determining when an object that has
been removed from a data structure can actually be freed. Sev-
eral solutions have been proposed to solve this problem. Fine-grain
techniques [3, 5, 11, 20, 27, 28, 34] track the use of each pointer in-
dividually. Thus they bound the number of non-reclaimable mem-
ory locations in the presence of thread failures, but incur a high
overhead as they need to interact with every pointer load. To some
extent this problem can be remedied by coarsening pointer tracking
[8], or by distinguishing between read and write operations [10].
Coarse-grain techniques work on an per-operation level, so they in-
cur less runtime overhead. However, thread failures in the middle of
an operation prevent memory reclamation, so such techniques are
considered blocking [5]. Coarse grain techniques include the ap-
plication of fuzzy barriers [15] to guarantee container quiescence,
read-copy update mechanisms [32] that offer inexpensive reads but
costly updates, and epochs (or timestamps) [12]. Debra+ is a recent
epoch implementation that uses POSIX signals to abort operations
that are in progress when a thread does not advance its epoch in
some specified amount of time [9]. Finally, garbage collection [6]
is a natural solution to this problem of determining when to free ob-
jects, but currently no available garbage collection technique offers
all desirable properties. [30]

1.1 Contributions and Outline
In this paper we will revisit epochs and utilize hardware transac-
tions for reading and updating shared data structures. Similar to
Debra+, if a thread is delayed and prevents other threads from free-
ing memory, a thread can abort an ongoing operation by modifying
the delayed threads epoch counter. We tested our implementation
on a skip list with varying depth (from a linked list to N levels) and
compare it to a fine-grain locking and non-blocking implementa-
tion [19] using available memory management techniques, as well
as other HTM based implementations.



Figure 1: Linked list with Thread 1 inserting and Thread 2 remov-
ing an element

The remainder of this paper is outlined as follows. §2 provides
the background of this work, §3 and §4 describe our implementa-
tion of skiplists and epoch memory management in detail, §5 eval-
uates our approach by comparing it against other known HTM and
non-HTM techniques, §6 gives an overview of related work, and §7
concludes and offers some ideas for future work.

2. Background
2.1 Concurrent Linked-lists
Linked lists are a widely used data structure in sequential and con-
current computing. A problem of concurrent linked lists is the dele-
tion of an element (the victim). An implementation of delete that
applies just compare and exchange to update the predecessor’s next
pointer with the victim’s next pointer would lose any update to the
victim’s successor that took place after the victim’s pointer was
read. In Fig. 1 Thread 1 inserts an element 6. It has determined that
4 is the predecessor and 8 is the successor. At the same time, Thread
2 removes element 4. It may have seen that 8 is 4’s successor, thus
updating 1’s next element to 8. This would lose the inserted ele-
ment 6. A fine-grained locking implementation may use locks on
the victim and its predecessor to disallow any modification while
the deletion is taking place. Note that any other reading thread can
optimistically read through the affected nodes. Harris’s lock-free
implementation [16] marks the victim’s next pointer, thereby indi-
cating that a node has been logically deleted. When other threads
find a marked node, they help remove the element from the data
structure.

As a remedy to such problems, Herlihy and Moss conceived the
notion of transactional memory to allow atomic updates of multi-
ple memory locations[18]. Transactional memory is an optimistic
concurrency control mechanism [23]. Executed transactions are se-
rializable. A transaction is comprised of a sequence of instructions
that are executed speculatively. If it succeeds, all updates take ef-
fect atomically. If an element that has been read in a transaction
is modified by other threads, the transaction aborts and no update
takes effect.

While we could execute an operation in a single transaction [2]
it is often not desirable to do that when some operations are not
read-only. If multiple threads execute a coarse grain transaction,
only one (or maybe none) may succeed, while others get aborted
due to transactional conflicts. Consider a linked list where three
threads update the first, second, and third element respectively.
Before they execute their respective updates, the third thread must
have read the first two elements, and the second must have read
the first element. An update by the first thread conflicts with the
read of the other threads and possibly aborts them, unless the other
threads finish their transactions before the first thread can execute
an update. Note that memory management in systems with coarse
grain transactions is as simple as in coarse grain locks. Any thread
that successfully executes a transaction updating an object’s entry
point causes an abort for any other thread accessing the same object
through the same entry point.

2.2 Systems with Hardware Transactional Memory
In actual HTM implementation, the size of a transaction is limited
by the hardware and ranges from a few kilobytes (IBM zEC12 and
IBM Power8) to multiple megabytes (IBM Blue Gene/Q). More-
over, most HTM implementations are best-effort and do not pro-
vide progress guarantees. Due to cache conflicts or operating sys-
tem scheduling, a transaction can spuriously fail long before the
maximum transaction size is reached. On such systems program-
mers are required to provide a non-transactional fall-back path to
work around these limitations.

2.3 Transaction Partitions
To cope with these limitations, many HTM based algorithms di-
vide a large transaction into several smaller partitions. Consistency-
oblivious computing [4] divides transactions in a read and up-
date partition. Xiang and Scott describe automatic partitioning for
large transactions [41]. Partitioning schemes may distinguish be-
tween read and write partitions, where reading is often done out-
side of transactions for performance reasons. Several concurrent
data structures use a variable size transaction window to dynam-
ically adjust the transaction size to the current workload [3, 11].
However, partitioning a large transaction into several smaller steps
reintroduces the memory management problem. A transaction tx
that is partitioned into several smaller transactions tx0, tx1, .. needs
to secure all objects at the end of a partition txn that are needed to
start the next transaction txn+1. Compared to hazard pointers, a
transactional linked list needs to secure only a single anchor node.
The anchor can be validated at the beginning of a transaction, and
the transaction will fail if the node gets invalidated.

Recent work has revisited and improved fine-grain memory
management techniques, such as reference counting and hazard
pointers, by using hardware transactions [11]. It has been found
that HTM enhances these techniques in several ways. The major
benefit is that HTM makes telescoping possible. Only objects that
need to be held in between two transaction partitions need to be
secured [25]. Depending on the supported transaction sizes, this
helps eliminate costly per object operations for hazard pointers and
contention on reference counters [11].

2.4 Epoch
Many concurrent systems avoid tracking every single object and
resort to coarse grain techniques such as epochs, read-copy-update
(RCU) [32], and quiescent techniques. However, these techniques
are considered blocking because a single delayed or failed thread
can prevent memory from being freed [5].

The key idea of epochs is that each thread has its own epoch
counter. When a thread starts an operation, the counter is incre-
mented, and when the operation finishes, the counter is incremented
again. Thus an even counter indicates no activity, while an odd
counter indicates that an operation is in progress. After a thread has
removed an object from a data structure, it reads the epoch coun-
ters from all threads. The object is tagged with those counter values.
When a thread attempts to free an object, it reads the epoch coun-
ters a second time. A removed object can be actually reclaimed if
the following condition holds for every thread: thread has advanced
its epoch, or a thread’s epoch counter indicates no active operation.

Recently Brown [9] has introduced Debra+, an epoch imple-
mentation that can abort another delayed thread through the means
of POSIX signal. A thread that sees another thread delayed amidst
an active operation can send a signal to that thread. The interrupted
thread will execute the signal handler and abort its current opera-
tions by executing a siglongjmp. Debra+ does not suffer from de-
layed threads and is non-blocking. The application of epoch mem-
ory management to concurrent data structures can be easily auto-
mated by a source-to-source transformation system, as each entry



and exit point of an operation are augmented with code that inter-
acts with the memory manager [9].

2.5 Memory Ordering
Since we compare our approach against an implementation us-
ing relaxed memory operations, we also introduce the C++11
memory model briefly. C++11 distinguishes between data oper-
ations and synchronization operations. Memory locations subject
to data races have to be of atomic type. A data race is defined
as two or more concurrent memory accesses to the same mem-
ory location, where at least one of them is a write [33]. Pro-
grammers can exercise fine-grain control over memory ordering
by tagging atomic operations. By default atomic operations use
sequential consistency (tag memory order seq cst) to establish a
total order among them. A use case are standard hazard point-
ers, where a sequentially consistent operation separates the pub-
lication of a pointer from its validation. That operation needs
to be globally ordered with another thread starting to scan pub-
lished hazard pointers [17]. The tags memory order release /
memory order acquire form a pair on the stored/loaded value.
They guarantee that the reading thread sees all memory up-
dates in the storing thread that occurred before the store tagged
with release. The memory order release / memory order consume

tags also form a pair on the stored/loaded value. Compared to
memory order acquire, memory order consume offers weaker guar-
antees. It preserves order only for data that is accessed through the
“consumed” value. The tag memory order relaxed does not estab-
lish an ordering relationship. Descriptions of the C++11 memory
model and more subtle details are described by the C++11 stan-
dard [21], Boehm and Adve [7], and Williams [39].

Linked lists commonly use release/consume semantics to read
the next pointer of a cell and release to insert a new element [26].
Consider the code for insert in the following snippet. insert

creates a new element, and inserts it into the linked list between
prev and next. The release tag on the CAS guarantees that the
order between the constructor call and the CAS is preserved.

1 struct IntList { int data; std::atomic<IntList∗> next; };
3 void insert(IntList∗ prev, IntList∗ next, int val) {

IntList∗ el = new IntList(val, next);
5 if (!prev−>next.CAS(next, el, std::memory order release, ...)) {

// insert failed, start over
7 }
}

Iterating through the linked list would use consume semantics.
Consider the following code snippet. consume preserves dependen-
cies, thus a reading thread can safely access the content of a linked
list node through next, which was loaded using consume. Together
with release, consume preserves the happens-before relationship
object creation → data structure update → pointer read → data
access through pointer.
auto find(int val) −> std::pair<IntList∗, IntList∗> {

2 IntList∗ prev = ...
IntList∗ next = prev−>next.load(std::memory order consume);

4 while (next && next−>data < val) {
prev = next; next = prev−>next.load(std::memory order consume);

6 }
return std::make pair(prev, next);

8 }

std::memory order consume can, in principle, be implemented
efficiently on most architectures. On x86 consume is a mov in-
struction, and on PowerPC systems, consume could also be imple-
mented through a cheap lwz instruction[31], as long as the compiler
can track dependencies. However, many current compilers treat
consume similar to acquire. Acquire is a stronger primitive that
also guarantees ordering when the last data access is independent
from the acquired value (e.g., some other value that the releasing

thread has stored). On the Power8, acquire requires a light weight
barrier to be inserted after the load [1]. Fine-tuning data structures
by using non-sequentially consistent operations is challenging be-
cause reasoning about possible interleavings and memory orderings
is difficult.

Conversely, hardware transactions processing offers the benefit
of coarse grain synchronization at the beginning and the end of a
transaction. Any read within a transaction does not require memory
ordering barriers (when update operations are performed within
transactions). This greatly simplifies the design of algorithms. In
terms of performance, reading and updating linked data structures
can be performed more cheaply within a transaction. However, this
benefit may be countered by transactional overhead at the start and
commit time.

3. Implementation
This section describes our skip list implementation for HTM sys-
tems followed by a description of our epoch implementation.

3.1 Skip list
In order to test memory managers, we implemented an HTM based
skip list in C++ enhanced with low-level operations accessing the
HTM hardware. A skip list is a probabilistic data structure that con-
sists of multiple layers, where each layer is organized as linked list.
When an object is inserted, the data structure randomly determines
in how many layers an object participates. The likelihood that an
object participates in the next layer decreases by a predetermined
factor. Both lock-free and fine-grained locking algorithms for skip
lists are known [19]. The main algorithmic difference between
these two is that the lock-free version, similar to a list implementa-
tion, marks nodes to be deleted and then relies on helping by other
threads that happen to read through the same nodes. In contrast, the
fine-grained locking based skip list uses a lock-free find method to
identify all predecessor and successor nodes of an operation. Then
an update operation acquires locks for all predecessors and succes-
sors (or the victim in case of remove) in descending order. Once all
locks have been acquired, the data structure can be modified. While
a thread updates the data structure, any other thread that needs to
update the same nodes is blocked. When it eventually acquires the
locks, it tests whether the modification invalidated its operation,
in which case the thread restarts the operation. Note that find ig-
nores locks and continues reading through these nodes. Interest-
ingly enough, this property renders fine-grained memory manage-
ment techniques unsuitable. Consider a thread t1 reading a node a,
which has a successor b. Before it accesses its data, t1 secures a by,
for example, publishing its pointer. Then two other thread remove
a and b from the list. Since the next field of a has not been updated,
t0 may “secure” b at a time when it has been released. The use of
HTM helps solve this problem.

We chose to derive our implementation from the fine-grain
locking skip list. The rationale for this choice was that HTM allows
us to replace the critical section with a transaction that modifies the
data structure atomically. We implemented two update operations
(insert, erase) and one operation that queries whether an element
is in the data structure (contains). Update operations are executed
in two phases. (1) find finds a node with a given value, or if that
node is not present, its immediate successors, and all predecessor
nodes (2) execute updates the data structure.

A skip list node contains the data, the number of levels, and a
pointer to an array containing pointers to the successor nodes. The
successor nodes are manipulated in a single transaction and are in a
valid state until the node gets deleted. In this case, the link at level
zero is set to null.



find: The find operation is further split into several smaller trans-
actions to minimize conflicts with concurrent updates and to deal
with capacity aborts. Like Dragojević et al.[11] we use dynamically
sized transactions. The transaction size is computed as rolling av-
erage over the last four successful transactions. When a transaction
repeatedly fails, we reduce the transaction size by half. When the
last four transaction sizes were the same, we double the transac-
tion size. Instead of dealing with the actual memory footprint, we
count the transaction size in terms of reading the number of next
pointers. Thus, the minimum transaction size is two (so find can
make progress) and the maximum (also the starting point) has been
empirically determined for a given hardware by executing a single
operation on a skip list that does not use memory management and
stores integers. find traverses a skip list until it reaches its transac-
tion limits. It secures all immediate predecessors at a higher level
and an anchor node. The first step in the follow-up transaction val-
idates that the anchor node has not been removed in the meantime.
This is done by reading its successor node at the lowest level. If that
is null, the node has been deleted and the operation is restarted.

Executing find in a transaction serves several purposes. With
a fine-grained memory management scheme, we get the benefits
of telescoping. Only nodes that are held in between transactions
need to be secured. While inside of the transaction, we can rely on
conflict aborts to stop a transaction when another thread has modi-
fied it. With coarse-grain memory management, the transaction al-
lows other threads to abort an operation that seemingly makes no
progress. In addition, the transaction allows us to use cheap relaxed
reads of interlinked data structures.

execute: before an update operation begins, threads carry out
non-transactional code, such as creating a new node and interlink-
ing its next pointers to the expected successors. A update transac-
tion validates that the predecessor and successor (or victim) nodes
produced by find have not changed. The last part of the execution
updates the data structure. We do not divide this update any further,
though this could be achieved through descriptors. Instead we rely
on hardware capabilities to handle transactions of this size.

The use of transactions greatly simplifies the algorithm design
because a node is either fully part of a data structure, or it is not part
of the data structure. The fine-grained locking algorithm achieves
this by using two boolean flags, which are redundant in an HTM
environment.

If the validation fails, the operation is restarted. Here, both im-
plementations allow for a minor improvement. Instead of restarting
the operation from the beginning, the operation could restart with
the first valid predecessor node that has more levels than the victim
(or inserted) node.

fallback path: When the execution of an operation in a transac-
tion consistently fails, the skip list falls back to a single global lock
implementation. Due to variable size transactions, the fall back path
will be rarely taken.

4. Memory Management Design and
Implementation

In this section we describe the implementation of epochs for HTM
systems.

4.1 Epochs for HTM systems
We derive epochs for HTM systems from a standard epoch imple-
mentation. Standard epochs increment a counter at the beginning
and at the end of a transaction. Other threads only read a thread’s
epoch counter and determine whether an epoch is active, and if a
thread has made progress since a node was removed from the data
structure.

In epochs for HTM systems, we allow other threads to update
the epoch counter, thereby terminating a thread’s operation. We
describe the necessary modifications below.
void begin epoch() {

2 // the first time a thread is executed
if (!epochdata)

4 epochdata = announceThread();

6 size t epochval = epochdata−>epoch.load(relaxed) + 1;
epochdata−>epoch.store(epochval, relaxed);

8 atomic thread fence(seq cst);
}

10 void end epoch() {
12 size t epochval = epochdata−>epoch.load(relaxed);

14 // exiting an operation
if (isActive(epochval))

16 epochdata−>epoch.CAS(epochval, epochval+1, relaxed, relaxed);

18 if (timeToCollect(epochval)) release memory();
}

The first time a thread starts an epoch, begin epoch creates a
new entry, initializes the epoch counter to 0, and enters it into
a global data structure. epochdata is a thread local pointer that
points to a thread’s epoch data. The thread increments its epoch
counter and uses a sequentially consistent barrier to globally order
this operation with other threads that read that counter when they
release memory. The code of begin epoch is the same as for epochs
without HTM.

Exiting an epoch increments the counter. Conversely to epochs
without HTM, the epoch counter can be modified by other threads.
A CAS guarantees that a thread does not increment an epoch
counter that has been modified by another threads’ cancellation.
The CAS uses relaxed consistency. It is ordered with the preceding
transaction at the transaction boundary. The C++ language guar-
antees that the update eventually becomes visible to other threads.
Thus, using relaxed may delay, but not indefinitely prevent, free-
ing of nodes.

To adapt this mechanism for transactions, we introduce func-
tions for validation and cancellation. The validation is called from
a transactional context, and cancellation allows other threads to ter-
minate a transaction.

1 void validate transaction() {
if (!(epochdata−>epoch.load(relaxed) & 1))

3 tx::abort();
}

5 void cancel transaction(size t id, size t currepoch) {
7 epoch t∗ epochptr = lookup thread(id);

epochptr−>epoch.compare exchange strong(currepoch, currepoch+1);
9 }

validate transaction reads the thread’s epoch counter and
loads it into the transaction’s read set. If the epoch counter was
incremented by another thread before the transaction started exe-
cuting, validate transaction aborts the transaction immediately.
If some other thread increments the the epoch counter while the
transaction is executing, HTM detects the conflict and aborts the
transaction. Since other threads only cancel a transaction (making
the epoch counter even) it is sufficient to test whether the epoch is
still set active.

1 // use of validate transaction
if (tx::begin()) { // starts a transaction

3 ...
validate transaction();

5 ...
tx::end();

7 }
else { // abort handler

9 // retries or enters lock−based fall back path
}

cancel transaction receives two arguments id and currepoch,
indicating the id and epoch of the thread to be canceled. After look-



ing up the thread’s epoch record the transaction is canceled by a
CAS incrementing the epoch counter and setting it to the next inac-
tive value. If multiple threads attempt to cancel a thread’s transac-
tion, only the first thread succeeds in modifying the counter value.
Other threads’ CAS will fail thereby indicating that an operation is
no longer active. Either the delayed thread has finished its opera-
tion meanwhile, or some thread has canceled an ongoing operation.
The nodes that the thread id potentially accessed can be released.

Object reclamation: When an object is removed from a data
structure it is enqueued in a list of objects whose deallocation
is pending. Objects in this list will be tagged with a timestamp
indicating when the object was removed from the data structure and
a survival count. The timestamp is represented by a vector of epoch
counters, ts = (et0, . . . , et1). Initially, an object is untagged.
When the number of untagged objects reaches a certain threshold
τ , where τ >= |threads|, a thread collects a new timestamp by
reading all other thread’s current epoch counters and associates the
timestamp with yet untagged objects. The collected timestamp is
also used to identify objects that can be freed. An object can be
freed, if the comparison of its tag with the current timestamp shows
that either every thread has advanced since the object was tagged, or
a thread has been quiescent at the time when the object was tagged,
∀0≤i<n, tsi > tag(obj )i ∨ even(tag(obj )i). If an object cannot
be reclaimed, its survival count is incremented. When the survival
count reaches a threshold σ, then all threads whose epoch counter
prevent deallocation will be canceled. Thus, a thread will hold at
most τ σ objects whose deallocation is pending.

5. Evaluation
We evaluate our implementation on two different hardware plat-
forms: Intel Haswell and Power8. Table 1 gives an overview of the
systems and their HTM capabilities [29].

Haswell Power8
Cores 1x4 2x10
Threads/core 2 8
Conflict-detection 64 bytes 128 bytes
granularity
Transactional 4 MB 8 KB
load capacity
Transactional 22 KB 8 KB
store capacity
Level 1 data cache 32 KB, 8-way 64 KB, 8-way
Level 2 data cache 256 KB 512 KB, 8-way

Table 1: Overview of test systems

Comparing the two architectures, the Intel Haswell’s transac-
tion capacity is significantly larger than the Power8’s. The Power8
system is a two socket system, where each socket has 10 cores,
and each of the cores supports up to eight threads in hardware. In
contrast the Haswell system has a single socket with four hyper-
threading enabled cores. Under these parameters we expect a higher
abort count on the Power8 system. We expect a higher number of
transaction collisions and capacity aborts due to the higher number
of supported threads and the smaller size of supported transactions.
Both systems are best effort implementations and do not provide
progress guarantees. Even when executed in isolation, a transac-
tion may fail due to cache size limitation, cache associativity lim-
itations, or context switches, for example, induced by page faults.
Under a best case scenario, the Haswell can update up to 352 in-
dependent memory locations. Due to its smaller store capacity and
larger cacheline size, the Power8 can update up to 64 independent
memory locations. Depending on the HTM implementation, worst

case sizes can be dramatically smaller. The Power8 also offers sus-
pended transactions to allow the reading of shared data that can
introduce order to transactions or to reduce the pressure on trans-
action size. We have not yet explored the use of that feature.

5.1 Performance Comparison
We tested the following scenarios on Power8 and Intel architec-
tures. The code was compiled with gcc-4.8 and we used -O2 -
march=native (-mcpu=native on Power8) for code optimizations.
Each test was run with n operations. To initialize the data structure,
n/10 insert operations were executed. Then we timed the execu-
tion of 45% insert and 45% alternating erase operations. We used
unique elements for insert and passed existing elements to erase,
so that any operation would succeed. Consequently, the data struc-
ture contained total operations

10
elements after the initial insert phase.

Each test was run 10 times, and the average was reported after the
best and worst timing were removed.

We compared several algorithms, including epochs / HTM, ref-
erence counting / HTM, publish and scan / HTM, and a StackTrack
implementation.

Publish and scan / HTM publishes all hazard pointers at the
end of each find partition to shared memory. The size of the find
partition was dynamically determined (§ 3.1). Pointer publishing
needs to be part of a transaction and therefore the number of
published pointers reduces the transaction size slightly. However,
due to the Power8’s large cache line, publishing 16 pointers would
just take one independent HTM storage location. Memory scans of
published pointers are a fairly cheap operation, implemented by a
sequentially consistent barrier followed by relaxed memory reads
from the published pointer lists.

StackTrack publishes the location of its references to shared ob-
jects. The references are already stack allocated, thus the amount
of published pointers is reduced to one. While this reduces trans-
actional memory footprint on most systems, it also requires that
scans through other thread’s published references are run inside a
transaction to avoid accessing a terminated thread’s stack.

Reference Counting for HTM systems: Our implementation fol-
lows the Dragojević [11] reference counting implementation. HTM
simplifies reference counting significantly, because a thread can
read a pointer to an object and update the object’s reference counter
within a transaction. In order to prevent conflicts due to false shar-
ing, we placed the reference counter on its own cacheline (i.e., sep-
arate from the next pointers). On one side this reduces transaction
aborts due to false sharing, but on the other side, this increases the
memory size of a transaction and consequently results in smaller
transaction partitions or more conflict aborts.

To further reduce the contention on reference counters, we ran-
domize the length of the first transaction partition within the range
of 2 and the maximum transaction length. This increases the likeli-
hood that threads searching through the same data structure region
find different anchor points.

A function that is partitioned into several smaller transactions
tx0, tx1, .. needs to secure all objects at the end of a transaction txn

that are needed to execute the next transaction txn+1. The function
that modifies the reference counters compares the set of secured
objects secn with the set identified by the previous transaction
secn−1. Reference counters for objects in secn and not in secn−1

will be incremented, and reference counters for objects in secn−1

and not in secn will be decremented. Reference counters of objects
in both sets remain unmodified.

A thread that removes an object from a data structure unlinks
the object from the data structure. The object can be released as
soon as its reference count reaches zero.



Other techniques: To establish a point of reference with tradi-
tional skip list implementations, we also tested a fine-grain locking
implementation using epochs as memory management and a lock-
free algorithm using hazard pointers. Lastly, we establish a base
case by using an HTM algorithm with a memory manager that does
not free, so it does not incur reclamation overhead, though it re-
quires more memory.

The reclamation’s frequency of the epoch schemes was adjusted
so that the number of reclamations was similar, but not lower, than
the number of StackTrack’s reclamations.

Linked list: We used a sorted linked list (i.e., a skip list with a
single level) and timed the execution of 100000 operations. We
varied the number of threads between 1 and threads supported in
hardware. In a first scenario, we generated data so that the insert
locations are disjoint after the initial insert phase, with the goal
to produce operations with low contention. Since this test uses a
linked-list, threads that operate in later sections of the list, could
be subject to conflict aborts when they read through an earlier sec-
tion where another thread performs update operations. The results
for the Power8 and Haswell architectures are displayed in Fig. 2
and Fig. 3 (diagrams on the right side). On the Power8, the fine-
grain locking implementation with epochs was clearly fastest. On
the Haswell, the fine-grain locking variant and the three HTM
based techniques (i.e., publish and scan, StackTrack, and epochs)
performed about the same. The HTM implementation without col-
lection gives a rough best case scenario for the use of HTM. HTM
based implementation significantly slowed down beyond the num-
ber of physical cores. The lockfree algorithm incurred high over-
head with low thread counts, but after reaching the number of phys-
ical cores, the performance was similar to HTM techniques. Refer-
ence counting using hazard pointers came in last.

Under another scenario, we generated data so that operations
either insert at the end or remove an element from the begin-
ning of the list. This scheme should generate contention, but due
non-determinism it is not guaranteed that several runs produce the
same amount of contention. Moreover, once maximum scalability
is reached, techniques that have more overhead often reduce con-
tention. The results for the Power8 and Intel architectures are dis-
played in Fig. 2 and Fig. 3 (diagrams on the left side). The relative
results are similar to the non-contentious case.

Skip list: We tested a skip list implementation under the same
two scenarios outlined for the linked list test. Tests executed 4M
operations in total. On the Intel, the maximum size of the skip list
was 32 levels (the likelihood of levels decreases with the power of
2), while on the Power8 system the number of skip list levels were
limited to 16 (the likelihood of levels decreases with the Power of
8) to account for the smaller HTM capacity.

Similar to linked lists, the three HTM techniques (epochs /
HTM, publish and scan, and StackTrack) and the fine-grained lock-
ing container perform best. Only in the test case that induces con-
tention on data structure accesses, the fine-grained locking skip list
does not scale beyond five threads on the Power system. The HTM
based approaches continue improving until the number of cores is
reached. Up to 40 threads StackTrack and epochs / HTM perform
similarly. Beyond that point, StackTrack scales better.

We also measured the impact of the reclamation technique on
the average number of steps (reading of the pointer to the successor
node) executed per transaction. Fig. 6 shows the average number
of steps for two scenarios. The left side scenario shows the mea-
surements obtained from our linked list test on the Intel Haswell.
The different approaches exhibit identical transaction lengths. The
exception is reference counting, whose average number of steps
is significantly smaller. Under contention, the transaction length

decreases. The transaction length of reference counting decreases
rapidly and reaches the minimum of two with four threads.

The right side in Fig. 6 shows the transaction lengths obtained
for skip lists on a Power8 system. Under no contention, no memory
management executes the largest number of steps, followed by
the epochs. StackTrack and publish and scan’s execute slightly
fewer steps in a transaction ( 1.7). Reference counting achieves
significantly fewer steps. With increasing number of threads, the
average transaction length decreases, but the relative performance
differences remain. We also measured the transaction length of skip
lists on the Haswell. In a single threaded execution all techniques
(including reference counting) achieved a transaction length of 79.
With four threads, only the transaction length of reference counting
started to decrease (58), while other systems’ transaction lengths
remained stable.

5.2 Discussion
In this section we compare the use of different memory manage-
ment techniques, including HTM versions of hazard pointers and
reference counting; techniques that rely on HTM, including Stack-
Track and Epochs / HTM; and an epoch based technique for non-
transactional memory. Table 2 provides an overview of our find-
ings.

All techniques except epochs without HTM support are non-
blocking, meaning a single delayed thread cannot prevent free-
ing objects. However, Debra+ is an epoch based scheme that uses
signals to abort operations of delayed threads and enables epochs
to become non-blocking. Hazard pointers, reference counting, and
StackTrack are fine grained techniques that secure individual ob-
jects from being reclaimed, while epochs are a coarse grain mech-
anism that operate on a per-operation level.

Hazard pointers and Stacktrack need to scan other thread’s se-
cured pointers to determine whether an object can be safely re-
leased. If the number of threads and hazard pointers are known,
the cost of scanning other thread’s pointers can be amortized over
a large number of objects, O(threads ∗ obj ∗ log(threads ∗ obj )),
yielding amortized constant time. In a similar fashion, epochs col-
lect other threads’ epoch counters. Thus the cost of scanning also
depends on the number of threads in a system, but is indepen-
dent from the number of secured objects. The collection of other
threads’ epochs should be amortized over a large number of re-
claimed objects (O(threads)). Reference counting operates on a
per-object basis, thus it is independent from the number of threads
in the system.

Due to current hardware limitations of transactions, techniques
that have a lower memory footprint are less likely to experience ca-
pacity aborts. In an execution without contention, a lower footprint
means that an operation can amortize the cost of transaction start
and commit through longer but fewer transactions. Traditional haz-
ard pointers maintain a list of objects that can be safely accessed.
This hazard pointer list is written before a transaction partition fin-
ishes. Thus hazard pointers incur a small memory overhead com-
pared to other methods. StackTrack improves on that by manipulat-
ing the list of objects directly, thereby eliminating both the memory
needed to store hazard pointers and the cost of copying those ob-
jects to shared memory. Reference counting incurs memory over-
head for storing the counter. In our implementation the counter is
located on a separate and non-adjacent cache line in order to mini-
mize conflict aborts. On the Power8 system, the increased demands
on memory caused capacity aborts. Epochs incur a small overhead
in that they need to read the thread’s epoch counter in every trans-
action. Epochs without TM incur only the cost of incrementing a
counter at the beginning and end of an operation. In addition to
that, Debra+ needs to save the execution context for every opera-
tion and requires clean-up code.



Figure 2: Execution time, Power8, sorted linked list, data induces conflicts (left) vs disjoint data (right), 100K operations

Figure 3: Execution time, Haswell, sorted linked list, data induces conflicts (left) vs disjoint data (right), 100K operations

Figure 4: Power8, skip list, 16 levels, data induces conflicts (left) vs disjoint data (right), 4M operations

Mixed-mode programming refers to the ability to utilize the
method in a non-transactional context. One use case is a variation
to the skip list algorithm’s restart sequence. The default algorithm
restarts an insert or erase operation from the beginning when the
corresponding predecessor or successor nodes have been modified.
This could be optimized by finding a predecessor that is a valid
node in the data structure. To this end, we could read the prede-
cessor list identified by find starting at the levels that a node sup-
ports. The first valid node would be a good point for restarting find.
Fine-grain systems secure objects on a per-object level, thus those
objects can be safely accessed in non-transactional code. Epoch /
HTM cannot do that because accessing an object outside a trans-
action could not be aborted by other threads, which would render
the technique blocking. Epochs and Debra+ do not use transac-
tions, though they could if transactional execution promises addi-
tional benefits. One such benefit would be the elimination of costly
memory barriers inside of a transaction. With hardware expected
to support larger transaction sizes, the positive performance effects
of transactions on relaxed memory architectures may become more

pronounced. Hazard pointers can be implemented portably with-
out resorting to specialized operating system or hardware support.
This makes them a good choice for systems that require a lock-free
fallback path. StackTrack and Epochs / HTM require that architec-
tures support HTM, while Debra+ requires that operating systems
support sending signals and siglongjmp.

As the performance experiments indicate, most methods per-
form reasonably well. (We have not tested Debra+, but accord-
ing to their description, the only overhead incurred in addition to
epochs is saving the processor state for a long return). Most HTM
based techniques significantly outperform a non-blocking publish
and scan (e.g., hazard pointers). Reference counting did not deliver
very good results. We attribute that to smaller transaction sizes.

6. Related Work
Fine-grained techniques bound the number of objects that cannot
be freed despite a thread failure or thread delay. Reference count-
ing [14, 28, 34, 36, 39] uses counters to keep track of the number



Figure 5: Haswell, skip list, 32 levels, data induces conflicts (left) vs disjoint data (right), 4M operations

Figure 6: Average number of steps / transaction size. left: Haswell, sorted linked list, disjoint data, 100K operations. right: Power8, skip list
(16 levels), disjoint data, 4M operations.

Hazard Pointers Reference Counting StackTrack Epochs Epochs / HTM

non-blocking ! ! ! % !

(Debra+!)
granularity fine fine fine coarse coarse
reclamation high low high medium medium
overhead
transactional high very high low none low
memory footprint
mixed-mode ! ! ! n/a %
programming
relaxed read / writes ! ! ! % !

portability ! ! HTM (Debra+ OS support) HTM
performance good (HTM) poor good good good

Table 2: Comparison of different memory management techniques

of threads that are currently holding pointers to an object. Refer-
ence counting incurs overhead on every pointer load in form of a
read-modify-write operation that manipulates the object’s counter.
Publish and scan techniques, such as Hazard pointers[27] or re-
peated offenders[20] publish the object references that a thread cur-
rently holds. Before freeing an object, threads scan other threads for
their published pointers, and delay freeing of an object if it is still
in use. These techniques incur a runtime overhead in the form of
a sequentially consistent barrier when a pointer is read [17]. Bal-
mau et al. present a fast-path/slow-path technique, where the slow
path uses hazard pointers. The slow path avoids expensive barri-
ers by deferring object reclamation and using auxiliary processes
that ensure the global visibility of published objects. Dragojević et
al. demonstrate the benefits of HTM hardware for dynamic collect
algorithms [11]. Cohen and Petrank [10] delay freeing reclaimed

memory and allow optimistic reads, where invalid reads can be rec-
ognized and lead to a restart. StackTrack[3] is an HTM technique
that exposes pointers to objects on the stack instead of using haz-
ard pointers. This reduces memory overhead, a precious resource
in transactional context, and runtime, because HTM eliminates the
need for expensive barriers.

Coarse-grain techniques include the application of fuzzy barri-
ers [15] to guarantee container quiescence, read-copy update mech-
anisms [32], that offer inexpensive reads, but costly updates, and
epochs (or timestamps) [12]. Epochs incur overhead per each con-
tainer operation. Coarse grain techniques are probe to thread delay
and failures. Debra+ is a recent epoch implementation that uses
POSIX signals to abort operations that are in progress and where
a thread did not advance its epoch in some specified amount of
time[9].



Drop-the-anchor [8] is a combination of timestamps and hazard
pointers. In case of a thread failure or delay, the state of that thread
is reconstructed through anchor points. Drop-the-anchor is a data
structure specific technique that currently is implemented only for
linked lists.

Finally, garbage collection techniques[6] also exist, though thus
far non available garbage collection technique offers all desirable
properties [30].

Several research projects investigate how to employ hardware
transactional memory support for concurrent data structures. Most
existing methods partition an operation into several segments. Tim-
nat and Petrank [35] propose normalized lock-free data struc-
tures that combine operations into read writes and write parti-
tions. Similar partitioning schemes were explored for transactions.
Consistency-oblivious computing [4] divides transactions in a read
and update partition. Xiang and Scott describe automatic partition-
ing for large transactions [41]. The authors also present red-black
trees and evaluated their approach on an IBM EC12 system [40].
Wang et al. describe a skip list implementation where transac-
tions were used to implement the data structure updates [38]. Li
et al. explored HTM-based optimization in the context of Cuckoo
hashing [24]. Several studies explore programming models where
HTM helps elide locks for shared memory updates in parallel sys-
tems [22, 23, 37].

7. Conclusion and Future Work
In this paper we have presented an extension to epochs for man-
aging memory for data structures on hardware transactional mem-
ory systems. The use of transactions makes a data structure opera-
tion cancelable by other threads as long as the fallback path is not
needed. We have tested our approach against other existing mem-
ory management techniques for HTM and conventional systems.
Epochs / HTM performs well when compared to other memory
management techniques.

We plan to incorporate epochs / HTM into other data structures
commonly used in concurrent systems. Similar to other work [11],
this paper assumes that an HTM based solution is able to make
progress. The tested systems do not offer this guarantee, thus the
integration of a fallback method is critically important for a realistic
software system.
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